全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control

DOI: 10.1371/journal.pcbi.1004720

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.

References

[1]  Beuter A, Lefaucheur JP, Modolo J. Closed-loop cortical neuromodulation in Parkinson’s disease: An alternative to deep brain stimulation? Clin Neurophysiol. 2014;125(5):874–885. doi: 10.1016/j.clinph.2014.01.006. pmid:24555921
[2]  Priori A, Foffani G, Rossi L, Marceglia S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol. 2013;245:77–86. doi: 10.1016/j.expneurol.2012.09.013. pmid:23022916
[3]  Hariz M. Deep brain stimulation: new techniques. Parkinsonism Relat Disord. 2014;20 Suppl 1:S192–6. doi: 10.1016/S1353-8020(13)70045-2. pmid:24262179
[4]  Keren H, Marom S. Controlling neural network responsiveness: tradeoffs and constraints. Front Neuroeng. 2014;7(April):11. doi: 10.3389/fneng.2014.00011. pmid:24808860
[5]  Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A. 1992;. doi: 10.1016/0375-9601(92)90745-8.
[6]  Pyragas K. A Twenty-Year Review of Time-Delay Feedback Control and Recent Developments. IEICE Proceeding Ser. 2014;1:683–686. doi: 10.15248/proc.1.683.
[7]  Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks,models and treatments. Trends Neurosci. 2007;30(7):357–364. doi: 10.1016/j.tins.2007.05.004. pmid:17532060
[8]  Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 2015;18(3):351–359. doi: 10.1038/nn.3950. pmid:25710837
[9]  Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11(2):100–113. doi: 10.1038/nrn2774. pmid:20087360
[10]  Rosenblum M, Pikovsky A. Controlling Synchronization in an Ensemble of Globally Coupled Oscillators. Phys Rev Lett. 2004;92(11):114102. doi: 10.1103/PhysRevLett.92.114102. pmid:15089140
[11]  Popovych O, Hauptmann C, Tass P. Effective Desynchronization by Nonlinear Delayed Feedback. Phys Rev Lett. 2005;94(16):164102. doi: 10.1103/PhysRevLett.94.164102. pmid:15904229
[12]  H?vel P, Dahlem Ma, Sch?ll E. Control of Synchronization in Coupled Neural Systems By Time-Delayed Feedback. Int J Bifurc Chaos. 2010;20(03):813–825. doi: 10.1142/S0218127410026101.
[13]  Liu J, Khalil HK, Oweiss KG. Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. J Neural Eng. 2011;8(4):045002. doi: 10.1088/1741-2560/8/4/045002. pmid:21775788
[14]  Grant PF, Lowery MM. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Trans Neural Syst Rehabil Eng. 2013;21(4):584–94. doi: 10.1109/TNSRE.2012.2202403. pmid:22695362
[15]  Pasillas-Lepine W, Haidar I, Chaillet A, Panteley E. Closed-loop deep brain stimulation based on firing-rate regulation. Int IEEE/EMBS Conf Neural Eng NER. 2013;p. 166–169.
[16]  Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 1999;p. 1–45. doi: 10.1162/089976699300016179
[17]  Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci. 2000;8:183–208. doi: 10.1023/A:1008925309027. pmid:10809012
[18]  Brunel N, Hansel D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 2006;18(5):1066–110. doi: 10.1162/neco.2006.18.5.1066. pmid:16595058
[19]  Brunel N, Hakim V. Sparsely synchronized neuronal oscillations. Chaos. 2008;18(1):015113. doi: 10.1063/1.2779858. pmid:18377094
[20]  Vlachos I, Herry C, Lüthi A, Aertsen A, Kumar A. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala. PLoS Comput Biol. 2011;7(3):e1001104. doi: 10.1371/journal.pcbi.1001104. pmid:21437238
[21]  Brittain JS, Probert-Smith P, Aziz T, Brown P. Tremor Suppression by Rhythmic Transcranial Current Stimulation. Curr Biol. 2013;23(5):436–440. doi: 10.1016/j.cub.2013.01.068. pmid:23416101
[22]  Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84. doi: 10.1016/j.neuron.2011.08.023. pmid:22017994
[23]  Berényi A, Belluscio M, Mao D, Buzsáki G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science. 2012;337(6095):735–7. doi: 10.1126/science.1223154. pmid:22879515
[24]  Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57. doi: 10.1002/ana.23951. pmid:23852650
[25]  Michiels W, Niculescu SI. Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Advances in Design and Control. Society for Industrial and Applied Mathematics; 2007.
[26]  Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 2001;106(2):313–330. pmid:11566503 doi: 10.1016/s0306-4522(01)00281-0
[27]  Stein E, Bar-Gad I. Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Elsevier Inc.; 2013.
[28]  Roxin A, Brunel N, Hansel D. Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett. 2005;94(23):1–4. doi: 10.1103/PhysRevLett.94.238103.
[29]  Socolar JES, Sukow DW, Gauthier DJ. Stabilizing unstable periodic orbits in fast dynamical systems; 1994. doi: 10.1103/physreve.50.3245
[30]  Rosenblum M, Pikovsky A. Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys Rev E. 2004;70(4):041904. doi: 10.1103/PhysRevE.70.041904.
[31]  Newman JP, Zeller-Townson R, Fong MF, Arcot Desai S, Gross RE, Potter SM. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform. Front Neural Circuits. 2013;6:98. doi: 10.3389/fncir.2012.00098. pmid:23346047
[32]  Grosenick L, Marshel JH, Deisseroth K. Closed-Loop and Activity-Guided OptogeneticControl. Neuron. 2015;86(1):106–139. doi: 10.1016/j.neuron.2015.03.034. pmid:25856490
[33]  Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci. 1998;18(10):3870–3896. pmid:9570816
[34]  Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F. Monitoring spike train synchrony. J Neurophysiol. 2013;109(5):1457–72. doi: 10.1152/jn.00873.2012. pmid:23221419
[35]  Lewis Da, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–324. doi: 10.1038/nrn1648. pmid:15803162
[36]  Guehl D, Edwards R, Cuny E, Burbaud P, Rougier A, Modolo J, et al. Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease. J Neurosurg. 2007;106(1):101–110. doi: 10.3171/jns.2007.106.1.101. pmid:17236495
[37]  Witjas T, Kaphan E, Azulay JP, Blin O, Ceccaldi M. Nonmotor fluctuations in Parkinson’s disease. Neurology. 2002;. doi: 10.1212/WNL.59.3.408. pmid:12177375
[38]  Schuepbach WMM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22. doi: 10.1056/NEJMoa1205158. pmid:23406026
[39]  Carron R, Chaillet A, Filipchuk A, Pasillas-Lépine W, Hammond C. Closing the loop of deep brain stimulation. Front Syst Neurosci. 2013;7(December):112. doi: 10.3389/fnsys.2013.00112. pmid:24391555
[40]  Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90(3):1195–268. doi: 10.1152/physrev.00035.2008. pmid:20664082
[41]  Kumar A, Cardanobile S, Rotter S, Aertsen A. The role of inhibition in generating and controlling Parkinson’s disease oscillations in the Basal Ganglia. Front Syst Neurosci. 2011;5(October):86. doi: 10.3389/fnsys.2011.00086. pmid:22028684
[42]  Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):67–81. doi: 10.1016/S1474-4422(08)70291-6. pmid:19081516
[43]  Grant PF, Lowery MM. Electric field distribution in a finite-volume head model of deep brain stimulation. Med Eng Phys. 2009;31(9):1095–103. doi: 10.1016/j.medengphy.2009.07.006. pmid:19656716
[44]  McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115(6):1239–1248. doi: 10.1016/j.clinph.2003.12.024. pmid:15134690
[45]  Schiff SJ, Sauer T. Kalman filter control of a model of spatiotemporal cortical dynamics. J Neural Eng. 2008;5(1):1–8. doi: 10.1088/1741-2560/5/1/001. pmid:18310806
[46]  Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12(1):1–24. pmid:4332108 doi: 10.1016/s0006-3495(72)86068-5
[47]  Batista CaS, Lopes SR, Viana RL, Batista aM. Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw. 2010;23(1):114–24. doi: 10.1016/j.neunet.2009.08.005. pmid:19726157
[48]  Bleich ME, Socolar JES. Controlling spatiotemporal dynamics with time-delay feedback. 1996;54(1):4. doi: 10.1103/physreve.54.r17
[49]  Rappel WJ, Fenton F, Karma A. Spatiotemporal Control of Wave Instabilities in Cardiac Tissue. Phys Rev Lett. 1999;83(2):456–459. doi: 10.1103/PhysRevLett.83.456.
[50]  Goldobin D, Rosenblum M, Pikovsky a. Coherence of noisy oscillators with delayed feedback. Phys A Stat Mech its Appl. 2003;327(1–2):124–128. doi: 10.1016/S0378-4371(03)00463-1.
[51]  Koch C. Biophysics of computation: information processing in single neurons. New York, NY: Oxford university press; 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133