MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10?16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.
Li LC, Okino ST, Zhao H, Pookot D, Place RF, et al. (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103: 17337–17342. pmid:17085592 doi: 10.1073/pnas.0607015103
[3]
Check E (2007) RNA interference: hitting the on switch. Nature 448: 855–858. pmid:17713502 doi: 10.1038/448855a
[4]
Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105: 1608–1613. doi: 10.1073/pnas.0707594105. pmid:18227514
[5]
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74. doi: 10.1038/nature11247. pmid:22955616
[6]
Kanak M, Alseiari M, Balasubramanian P, Addanki K, Aggarwal M, et al. (2010) Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl Immunohistochem Mol Morphol 18: 532–545. doi: 10.1097/PAI.0b013e3181e1ef6a. pmid:20502318
[7]
Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24: 2264–2269. doi: 10.1101/gad.590910. pmid:20952535
[8]
Go?i JR, de la Cruz X, Orozco M (2004) Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res 32: 354–360. pmid:14726484 doi: 10.1093/nar/gkh188
[9]
Jenjaroenpun P, Chew CS, Yong TP, Choowongkomon K, Thammasorn W, et al. (2015) The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome. Nucleic Acids Res 43: D110–116. doi: 10.1093/nar/gku970. pmid:25324314
[10]
Jenjaroenpun P, Kuznetsov VA (2009) TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 10: S9. doi: 10.1186/1471-2164-10-s3-s9
[11]
Semerad CL, Maher L Jr (1994) Exclusion of RNA strands from a purine motif triple helix. Nucleic Acids Res 22: 5321–5325. pmid:7529405 doi: 10.1093/nar/22.24.5321
[12]
Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165: 349–357. pmid:5789433 doi: 10.1126/science.165.3891.349
[13]
Park CW, Zeng Y, Zhang X, Subramanian S, Steer CJ (2010) Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol 7: 606–614. pmid:20864815 doi: 10.4161/rna.7.5.13215
[14]
Wei Y, Li L, Wang D, Zhang CY, Zen K (2014) Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem 289: 10270–10275. doi: 10.1074/jbc.C113.541417. pmid:24596094
[15]
Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA (2012) Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A 109: 19202–19207. doi: 10.1073/pnas.1217338109. pmid:23129630
Bacolla A, Collins JR, Gold B, Chuzhanova N, Yi M, et al. (2006) Long homopurine*homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucleic Acids Res 34: 2663–2675. pmid:16714445 doi: 10.1093/nar/gkl354
[18]
Hoyne PR, Edwards LM, Viari A, Maher LJ 3rd (2000) Searching genomes for sequences with the potential to form intrastrand triple helices. J Mol Biol 302: 797–809. pmid:10993724 doi: 10.1006/jmbi.2000.4502
[19]
Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258. doi: 10.1126/science.1279808
Maine IP, Kodadek T (1994) Efficient unwinding of triplex DNA by a DNA helicase. Biochem Biophys Res Commun 204: 1119–1124. pmid:7980585 doi: 10.1006/bbrc.1994.2578
[22]
Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A, et al. (2015) A distinct triplex DNA unwinding activity of ChlR1 helicase. J Biol Chem 290: 5174–5189. doi: 10.1074/jbc.M114.634923. pmid:25561740
[23]
Krasilnikova MM, Mirkin SM (2004) Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol Cell Biol 24: 2286–2295. pmid:14993268 doi: 10.1128/mcb.24.6.2286-2295.2004
[24]
Enright AJ, John B, Gaul U, Tuschl T, Sander C, et al. (2003) MicroRNA targets in Drosophila. Genome Biol 5: R1. pmid:14709173 doi: 10.1186/gb-2003-5-1-r1
[25]
Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-generation genome browser. Genome Res 19: 1630–1638. doi: 10.1101/gr.094607.109. pmid:19570905
[26]
Agazie YM, Burkholder GD, Lee JS (1996) Triplex DNA in the nucleus: direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth. Biochem J 316 (Pt 2): 461–466. pmid:8687388 doi: 10.1042/bj3160461
[27]
Ohno M, Fukagawa T, Lee JS, Ikemura T (2002) Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111: 201–213. pmid:12355210 doi: 10.1007/s00412-002-0198-0
[28]
Rhee S, Han Z, Liu K, Miles HT, Davies DR (1999) Structure of a triple helical DNA with a triplex-duplex junction. Biochemistry 38: 16810–16815. pmid:10606513 doi: 10.1021/bi991811m
[29]
Buske FA, Mattick JS, Bailey TL (2011) Potential in vivo roles of nucleic acid triple-helices. RNA Biol 8: 427–439. pmid:21525785 doi: 10.4161/rna.8.3.14999
[30]
Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18: 1585–1592. pmid:12490442 doi: 10.1093/bioinformatics/18.12.1585
[31]
Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315. pmid:14960456 doi: 10.1093/bioinformatics/btg405
[32]
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. pmid:15461798 doi: 10.1186/gb-2004-5-10-r80
[33]
Cheok MH, Yang W, Pui CH, Downing JR, Cheng C, et al. (2003) Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 34: 85–90. pmid:12704389 doi: 10.1038/ng1151
[34]
Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143. pmid:12086872 doi: 10.1016/s1535-6108(02)00032-6
[35]
Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, et al. (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351: 533–542. pmid:15295046 doi: 10.1056/nejmoa033513
[36]
Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chemical Physics Letters 255: 327–335. doi: 10.1016/0009-2614(96)00349-1
Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11: R90. doi: 10.1186/gb-2010-11-8-r90. pmid:20799968
[39]
Anderson DP (2004) BOINC: A System for Public-Resource Computing and Storage. Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing: IEEE Computer Society. pp. 4–10.
[40]
Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, et al. (1985) The mosaic genome of warm-blooded vertebrates. Science 228: 953–958. pmid:4001930 doi: 10.1126/science.4001930
[41]
Keller RLJ (2005) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment: Diss., Naturwissenschaften, Eidgen?ssische Technische Hochschule ETH Zürich, Nr. 15947, 2005.