全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns

DOI: 10.1371/journal.pcbi.1004655

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epidemics of infectious diseases often occur in predictable limit cycles. Theory suggests these cycles can be disrupted by high amplitude seasonal fluctuations in transmission rates, resulting in deterministic chaos. However, persistent deterministic chaos has never been observed, in part because sufficiently large oscillations in transmission rates are uncommon. Where they do occur, the resulting deep epidemic troughs break the chain of transmission, leading to epidemic extinction, even in large cities. Here we demonstrate a new path to locally persistent chaotic epidemics via subtle shifts in seasonal patterns of transmission, rather than through high-amplitude fluctuations in transmission rates. We base our analysis on a comparison of measles incidence in 80 major cities in the prevaccination era United States and United Kingdom. Unlike the regular limit cycles seen in the UK, measles cycles in US cities consistently exhibit spontaneous shifts in epidemic periodicity resulting in chaotic patterns. We show that these patterns were driven by small systematic differences between countries in the duration of the summer period of low transmission. This example demonstrates empirically that small perturbations in disease transmission patterns can fundamentally alter the regularity and spatiotemporal coherence of epidemics.

References

[1]  Grais RF, Conlan AJK, Ferrari MJ, Djibo A, Le Menach A, Bj?rnstad ON, et al. Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J R Soc Interface. 2008. doi: 10.1098/rsif.2007.1038
[2]  Bharti N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT. Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science. 2011;334: 1424–1427. doi: 10.1126/science.1210554. pmid:22158822
[3]  World Health Organization. Global measles and rubella strategic plan: 2012–202. 2012. pp. 1–44.
[4]  Metcalf C, Tatem A, Bj?rnstad ON. Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiol Infect. 2014. doi: 10.1017/s0950268814001988
[5]  Finkenst?dt BF, Grenfell BT. Time series modelling of childhood diseases: a dynamical systems approach. J R Stat Soc C. Blackwell Publishers Ltd; 2000;49: 187–205. doi: 10.1111/1467-9876.00187
[6]  Grenfell BT, Bj?rnstad ON, Finkenst?dt BF. Dynamics of measles epidemics: Scaling noise, determinism, and predictability with the TSIR model. Ecological Monographs. 2002;72: 185–202. doi: 10.2307/3100024
[7]  King AA, Ionides EL, Pascual M, Bouma MJ. Inapparent infections and cholera dynamics. Nature. 2008;454: 877–880. doi: 10.1038/nature07084. pmid:18704085
[8]  Pitzer VE, Viboud C, Simonsen L, Steiner C, Panozzo CA, Alonso WJ, et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science. American Association for the Advancement of Science; 2009;325: 290–294. doi: 10.1126/science.1172330. pmid:19608910
[9]  Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. PNAS. National Acad Sciences; 2012;109: 20425–20430. doi: 10.1073/pnas.1208772109. pmid:23184969
[10]  ?uksza M, L?ssig M. A predictive fitness model for influenza. Nature. Nature Publishing Group; 2014;507: 57–61. doi: 10.1038/nature13087. pmid:24572367
[11]  Bj?rnstad ON, Finkenst a dt BF, Grenfell BT. Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecological Monographs. Eco Soc America; 2002;72: 169–184. doi: 10.2307/3100023
[12]  Earn DJD, Rohani P, Bolker BM, Grenfell BT. A Simple Model for Complex Dynamical Transitions in Epidemics. Science. American Association for the Advancement of Science; 2000;287: 667–670. pmid:10650003 doi: 10.1126/science.287.5453.667
[13]  Grenfell B, Harwood J. (Meta) population dynamics of infectious diseases. Trends Ecol Evol. Elsevier; 1997;12: 395–399. pmid:21238122 doi: 10.1016/s0169-5347(97)01174-9
[14]  Grenfell B, Bjornstad O, Kappey J. Travelling waves and spatial hierarchies in measles epidemics. Nature. Nature Publishing Group; 2001;414: 716–723. pmid:11742391 doi: 10.1038/414716a
[15]  Stocks P. Measles and whooping-cough incidence before and during the dispersal of 1939–41. J R Stat Soc A. 1942;105: 259–291. doi: 10.2307/2980435
[16]  Metcalf CJE, Bj?rnstad ON, Grenfell BT, Andreasen V. Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen. Proc R Soc B. 2009;276: 4111–4118. doi: 10.1098/rspb.2009.1058. pmid:19740885
[17]  Stone L, Olinky R, Huppert A. Seasonal dynamics of recurrent epidemics. Nature. Nature Publishing Group; 2007;446: 533–536. pmid:17392785 doi: 10.1038/nature05638
[18]  Olsen LF, Truty GL, Schaffer WM. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor Popul Biol. 1988;33: 344–370. pmid:3266037 doi: 10.1016/0040-5809(88)90019-6
[19]  Ferrari MJ, Grais RF, Bharti N, Conlan AJK, Bj?rnstad ON, Wolfson LJ, et al. The dynamics of measles in sub-Saharan Africa. Nature. Nature Publishing Group; 2008;451: 679–684. doi: 10.1038/nature06509. pmid:18256664
[20]  May RM. Simple Mathematical-Models with Very Complicated Dynamics. Nature. 1976;261: 459–467. pmid:934280 doi: 10.1038/261459a0
[21]  Kot M, Schaffer WM. The effects of seasonality on discrete models of population growth. Theor Popul Biol. 1984;26: 340–360. doi: 10.1016/0040-5809(84)90038-8
[22]  Schaffer WM, Kot M. Nearly one dimensional dynamics in an epidemic. J Theor Biol. 1985;112: 403–427. pmid:3982045 doi: 10.1016/s0022-5193(85)80294-0
[23]  Liu W-M, Hethcote HW, Levin SA. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol. Springer-Verlag; 1987;25: 359–380. pmid:3668394 doi: 10.1007/bf00277162
[24]  Bj?rnstad ON. Nonlinearity and chaos in ecological dynamics revisited. PNAS. 2015;: 201507708–2. doi: 10.1073/pnas.1507708112
[25]  Glass K, Xia Y, Grenfell BT. Interpreting time-series analyses for continuous-time biological models—measles as a case study. J Theor Biol. 2003;223: 19–25. pmid:12782113 doi: 10.1016/s0022-5193(03)00031-6
[26]  van Panhuis WG, Grefenstette J, Jung SY, Chok NS, Cross A, Eng H, et al. Contagious diseases in the United States from 1888 to the present. The New England Journal of Medicine. 2013;369: 2152–2158. 0 doi: 10.1056/NEJMms1215400. pmid:24283231
[27]  Grenfell BT, Bolker BM. Cities and villages: infection hierarchies in a measles metapopulation. 1998;1: 63–70.
[28]  Gibson C. Population of the 100 largest cities and other urban places in the United States 1790 to 1990. Population Division of US Bureau of Census. Population Division Working Paper. 1998. Report No.: 27.
[29]  Linder F, Grove R. Vital statistics rates in the United States 1900–1940.
[30]  Mantilla-Beniers NB, Bj?rnstad ON, Grenfell BT, Rohani P. Decreasing stochasticity through enhanced seasonality in measles epidemics. J R Soc Interface. The Royal Society; 2010;7: 727–739. doi: 10.1098/rsif.2009.0317. pmid:19828508
[31]  Cliff A, Haggett P, Smallman-Raynor M. Measles: An historical geography. Pion; 1993. doi: 10.1177/030913259501900413
[32]  Schenzle D. An age-structured model of pre- and post-vaccination measles transmission. IMA J Math Appl Med Biol. 1984;1: 169–191. pmid:6600102 doi: 10.1093/imammb/1.2.169
[33]  Hastings A, Hom CL, Ellner SP, Turchin P. Chaos in ecology: is mother nature a strange attractor? Annu Rev Ecol Syst. 1993;24: 1–33. doi: 10.1146/annurev.es.24.110193.000245
[34]  Rand DA, Wilson HB. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc R Soc B. 1991;246: 179–184. pmid:1685243 doi: 10.1098/rspb.1991.0142
[35]  Lavine JS, King AA, Andreasen V, Bj?rnstad ON. Immune boosting explains regime-shifts in prevaccine-era pertussis dynamics. Yates AJ, editor. PLoS ONE. 2013;8: e72086. doi: 10.1371/journal.pone.0072086. pmid:23991047
[36]  Ellner SP, Turchin P. Chaos in a noisy world: new methods and evidence from time-series analysis. Am Nat. 1995;145: 343–375. doi: 10.1086/285744
[37]  Bj?rnstad ON. Cycles and synchrony: two historical “experiments” and one experience. J Anim Ecol. Blackwell Science Ltd; 2000;69: 869–873. doi: 10.1046/j.1365-2656.2000.00444.x
[38]  Godfray H, Grenfell BT. The continuing quest for chaos. Trends Ecol Evol. Trends in ecology & evolution; 1993;8: 43–44. doi: 10.1016/0169-5347(93)90155-i
[39]  Constantino RF, Cushing JM, Desharnais RA. Experimentally induced transitions in the dynamic behaviour of insect populations. Nature. 375: 227–230. doi: 10.1038/375227a0
[40]  Grenfell BT, Bolker BM, Kleczkoqski A. Seasonality and extinction in chaotic metapopulations. Proc Biol Sci. 1995;259: 97–103. doi: 10.1098/rspb.1995.0015
[41]  Rozhnova G, Metcalf CJE, Grenfell BT. Characterizing the dynamics of rubella relative to measles: the role of stochasticity. J R Soc Interface. 2013;10: 20130643–20130643. doi: 10.1098/rsif.2013.0643. pmid:24026472
[42]  Rohani P. Opposite Patterns of Synchrony in Sympatric Disease Metapopulations. Science. 1999;286: 968–971. pmid:10542154 doi: 10.1126/science.286.5441.968
[43]  Hanski I. Metapopulation dynamics. Nature. 1998;396: 41–49. doi: 10.1038/23876
[44]  Earn DJD, Levin SA, Rohani P. Coherence and Conservation. Science. American Association for the Advancement of Science; 2000;290: 1360–1364. pmid:11082064 doi: 10.1126/science.290.5495.1360
[45]  Metcalf CJE, Hampson K, Tatem AJ, Grenfell BT, Bj?rnstad ON. Persistence in Epidemic Metapopulations: Quantifying the Rescue Effects for Measles, Mumps, Rubella and Whooping Cough. McVernon J, editor. PLoS ONE. 2013;8. doi: 10.1371/journal.pone.0074696
[46]  Benincà E, Huisman J, Heerkloss R, J?hnk KD, Branco P, Van Nes EH, et al. Chaos in a long-term experiment with a plankton community. Nature. 2008;451: 822–825. doi: 10.1038/nature06512. pmid:18273017
[47]  Benincà E, Ballantine B, Ellner SP, Huisman J. Species fluctuations sustained by a cyclic succession at the edge of chaos. PNAS. National Acad Sciences; 2015;112: 6389–6394. doi: 10.1073/pnas.1421968112. pmid:25902520
[48]  Grais RF, Ferrari MJ, Dubray C, Bj?rnstad ON, Grenfell BT, Djibo A, et al. Estimating transmission intensity for a measles epidemic in Niamey, Niger: lessons for intervention. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2006;100: 867–873. pmid:16540134 doi: 10.1016/j.trstmh.2005.10.014
[49]  Metcalf CJE, Tatem A, Bj?rnstad ON, Lessler J, O'Reilly K, Takahashi S, et al. Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiol Infect. Cambridge University Press; 2015;143: 1457–1466. doi: 10.1017/S0950268814001988. pmid:25119237

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133