[1] | Thomas MJ, Moody TD, Makhinson M, O'Dell TJ Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 1996; 17: 475–482. pmid:8816710 doi: 10.1016/s0896-6273(00)80179-8
|
[2] | Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 1999; 24: 715–726. pmid:10595521 doi: 10.1016/s0896-6273(00)81124-1
|
[3] | Gelinas JN, Nguyen PV Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci 2005; 25: 3294–3303. pmid:15800184 doi: 10.1523/jneurosci.4175-04.2005
|
[4] | Gelinas JN, Banko JL, Hou L, Sonenberg N, Weeber EJ, Klann E, et al. ERK and mTOR signaling couple beta-adrenergic receptors to translation initiation machinery to gate induction of protein synthesis-dependent long-term potentiation. J Biol Chem 2007; 282: 27527–27535. pmid:17635924 doi: 10.1074/jbc.m701077200
|
[5] | Gelinas JN, Banko JL, Peters MM, Klann E, Weeber EJ, Nguyen PV Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus. Learn Mem 2008; 15: 403–411. doi: 10.1101/lm.830008. pmid:18509114
|
[6] | Qian H, Matt L, Zhang M, Nguyen M, Patriarchi T, Koval OM, et al. beta2-Adrenergic receptor supports prolonged theta tetanus-induced LTP. J Neurophysiol 2012; 107: 2703–2712. doi: 10.1152/jn.00374.2011. pmid:22338020
|
[7] | Chetkovich DM, Gray R, Johnston D, Sweatt JD N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci U S A1991; 88: 6467–6471. doi: 10.1073/pnas.88.15.6467
|
[8] | Chetkovich DM, Sweatt JD nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem 1993; 61: 1933–1942. pmid:7901336 doi: 10.1111/j.1471-4159.1993.tb09836.x
|
[9] | Iyengar R Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J 1993; 7: 768–775. pmid:8330684
|
[10] | Xia ZG, Refsdal CD, Merchant KM, Dorsa DM, Storm DR Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron 1991; 6: 431–443. pmid:2001286 doi: 10.1016/0896-6273(91)90251-t
|
[11] | Cali JJ, Zwaagstra JC, Mons N, Cooper DM, Krupinski J Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem 1994; 269: 12190–12195. pmid:8163524
|
[12] | Conti AC, Maas JW Jr., Muglia LM, Dave BA, Vogt SK, Tran TT, et al. Distinct regional and subcellular localization of adenylyl cyclases type 1 and 8 in mouse brain. Neuroscience 2007; 146: 713–729. pmid:17335981 doi: 10.1016/j.neuroscience.2007.01.045
|
[13] | Nicol X, Muzerelle A, Bachy I, Ravary A, Gaspar P Spatiotemporal localization of the calcium-stimulated adenylate cyclases, AC1 and AC8, during mouse brain development. J Comp Neurol 2005; 486: 281–294. pmid:15844169 doi: 10.1002/cne.20528
|
[14] | Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 199923: 787–798. doi: 10.1016/s0896-6273(01)80036-2
|
[15] | Impey S, Wayman G, Wu Z, Storm DR Type I adenylyl cyclase functions as a coincidence detector for control of cyclic AMP response element-mediated transcription: synergistic regulation of transcription by Ca2+ and isoproterenol. Mol Cell Biol 1994; 14: 8272–8281. pmid:7969163 doi: 10.1128/mcb.14.12.8272
|
[16] | Wayman GA, Impey S, Wu Z, Kindsvogel W, Prichard L, Storm DR Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J Biol Chem 1994; 269: 25400–25405. pmid:7929237
|
[17] | Suvarna NU, O'Donnell JM Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. J Pharmacol Exp Ther 2002; 302: 249–256. pmid:12065724 doi: 10.1124/jpet.302.1.249
|
[18] | Sette C, Conti M Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 1996; 271: 16526–16534. pmid:8663227 doi: 10.1074/jbc.271.28.16526
|
[19] | MacKenzie SJ, Baillie GS, McPhee I, MacKenzie C, Seamons R, McSorley T, et al. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). Br J Pharmacol 2002; 136: 421–433. pmid:12023945 doi: 10.1038/sj.bjp.0704743
|
[20] | Houslay MD, Baillie GS Beta-arrestin-recruited phosphodiesterase-4 desensitizes the AKAP79/PKA-mediated switching of beta2-adrenoceptor signalling to activation of ERK. Biochem Soc Trans 2005; 33: 1333–1336. pmid:16246112 doi: 10.1042/bst0331333
|
[21] | Bruss MD, Richter W, Horner K, Jin SL, Conti M Critical role of PDE4D in beta2-adrenoceptor-dependent cAMP signaling in mouse embryonic fibroblasts. J Biol Chem 2008; 283: 22430–22442. doi: 10.1074/jbc.M803306200. pmid:18508768
|
[22] | Bartlett WP, Banker GA An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J Neurosci 1984; 4: 1944–1953. pmid:6470762
|
[23] | Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 2004; 279: 37215–37218. pmid:15231839 doi: 10.1074/jbc.c400302200
|
[24] | Efendiev R, Samelson BK, Nguyen BT, Phatarpekar PV, Baameur F, Scott JD, et al. AKAP79 interacts with multiple adenylyl cyclase (AC) isoforms and scaffolds AC5 and -6 to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors. J Biol Chem 2010; 285: 14450–14458. doi: 10.1074/jbc.M110.109769. pmid:20231277
|
[25] | Zhang M, Patriarchi T, Stein IS, Qian H, Matt L, Nguyen M, et al. Adenylyl Cyclase Anchoring by A kinase Anchor Protein AKAP5 (AKAP79/150) is Important for Postsynaptic beta-Adrenergic Signaling. J Biol Chem. 2013; 288:17918–17931 doi: 10.1074/jbc.M112.449462. pmid:23649627
|
[26] | Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J 2006; 25: 2051–2061. pmid:16642035 doi: 10.1038/sj.emboj.7601113
|
[27] | Garnier V, Zini R, Sapena R, Tillement JP A match between binding to beta-adrenoceptors and stimulation of adenylyl cyclase parameters of (-)isoproterenol and salbutamol on rat brain. Pharmacol Res 1997; 35: 303–312. pmid:9264046 doi: 10.1006/phrs.1997.0141
|
[28] | Falkenburger BH, Jensen JB, Hille B Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells. J Gen Physiol 2010; 135: 81–97. doi: 10.1085/jgp.200910344. pmid:20100890
|
[29] | Liu HY, Wenzel-Seifert K, Seifert R The olfactory G protein G(alphaolf) possesses a lower GDP-affinity and deactivates more rapidly than G(salphashort): consequences for receptor-coupling and adenylyl cyclase activation. J Neurochem 2001;78: 325–338. pmid:11461968 doi: 10.1046/j.1471-4159.2001.00422.x
|
[30] | Mukhopadhyay S, Ross EM Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci U S A 1999; 96: 9539–9544. pmid:10449728 doi: 10.1073/pnas.96.17.9539
|
[31] | Berman DM, Wilkie TM, Gilman AG GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 1996; 86: 445–452. pmid:8756726 doi: 10.1016/s0092-8674(00)80117-8
|
[32] | Neubig RR, Connolly MP, Remmers AE Rapid kinetics of G protein subunit association: a rate-limiting conformational change? FEBS Lett 1994; 355: 251–253. pmid:7527348 doi: 10.1016/0014-5793(94)01212-1
|
[33] | Sedova M, Blatter LA Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium 1999; 25: 333–343. pmid:10463097 doi: 10.1054/ceca.1999.0036
|
[34] | Lorincz A, Rozsa B, Katona G, Vizi ES, Tamas G Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells. Proc Natl Acad Sci U S A 2007; 104: 1033–1038. pmid:17215351 doi: 10.1073/pnas.0605412104
|
[35] | Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, Bokvist K Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells. Biophys J 1999; 76: 2018–2028. pmid:10096898 doi: 10.1016/s0006-3495(99)77359-5
|
[36] | Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J Physiol 2007; 581: 619–629. pmid:17347272 doi: 10.1113/jphysiol.2007.127860
|
[37] | Brown SE, Martin SR, Bayley PM Kinetic control of the dissociation pathway of calmodulin-peptide complexes. J Biol Chem 1997; 272: 3389–3397. pmid:9013581 doi: 10.1074/jbc.272.6.3389
|
[38] | Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN A new role for IQ motif proteins in regulating calmodulin function. J Biol Chem 2003; 278: 49667–49670. pmid:14551202 doi: 10.1074/jbc.c300372200
|
[39] | Harrison JK, Hewlett GH, Gnegy ME Regulation of calmodulin-sensitive adenylate cyclase by the stimulatory G-protein, Gs. J Biol Chem 1989; 264: 15880–15885. pmid:2506172
|
[40] | Wang H, Storm DR Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol Pharmacol 2003; 63: 463–468. pmid:12606751 doi: 10.1124/mol.63.3.463
|
[41] | Tang WJ, Krupinski J, Gilman AG Expression and characterization of calmodulin-activated (type I) adenylylcyclase. J Biol Chem 1991; 266: 8595–8603. pmid:2022671
|
[42] | Cali JJ, Parekh RS, Krupinski J Splice variants of type VIII adenylyl cyclase. Differences in glycosylation and regulation by Ca2+/calmodulin. J Biol Chem 1996; 271: 1089–1095. pmid:8557635 doi: 10.1074/jbc.271.2.1089
|
[43] | Sharma RK, Wang JH Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase. Biochem Cell Biol 1986; 64: 1072–1080. pmid:3030366 doi: 10.1139/o86-142
|
[44] | Sharma RK, Kalra J Characterization of calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes. Biochem J 1994; 299 (Pt 1): 97–100. pmid:8166665 doi: 10.1042/bj2990097
|
[45] | Quintana AR, Wang D, Forbes JE, Waxham MN Kinetics of calmodulin binding to calcineurin. Biochem Biophys Res Commun 2005; 334: 674–680. pmid:16009337 doi: 10.1016/j.bbrc.2005.06.152
|
[46] | Stemmer PM, Klee CB Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 1994; 33: 6859–6866. pmid:8204620 doi: 10.1021/bi00188a015
|
[47] | Gaertner TR, Putkey JA, Waxham MN RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium. J Biol Chem 2004; 279: 39374–39382. pmid:15262982 doi: 10.1074/jbc.m405352200
|
[48] | Dupont G, Goldbeter A CaM kinase II as frequency decoder of Ca2+ oscillations. BioEssays 1998; 20: 607–610. pmid:9780834 doi: 10.1002/(sici)1521-1878(199808)20:8<607::aid-bies2>3.0.co;2-f
|
[49] | Bradshaw JM, Kubota Y, Meyer T, Schulman H An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci U S A 2003; 100: 10512–10517. pmid:12928489 doi: 10.1073/pnas.1932759100
|
[50] | Ogreid D, Doskeland SO The kinetics of association of cyclic AMP to the two types of binding sites associated with protein kinase II from bovine myocardium. FEBS Lett 1981; 129: 287–292. pmid:6269882 doi: 10.1016/0014-5793(81)80185-8
|
[51] | Herberg FW, Taylor SS, Dostmann WR Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Biochemistry 1996; 35: 2934–2942. pmid:8608131 doi: 10.1021/bi951647c
|
[52] | Zawadzki KM, Taylor SS cAMP-dependent protein kinase regulatory subunit type IIbeta: active site mutations define an isoform-specific network for allosteric signaling by cAMP. J Biol Chem 2004; 279: 7029–7036. pmid:14625280 doi: 10.1074/jbc.m310804200
|
[53] | Hemmings HC Jr., Nairn AC, Greengard P DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem 1984; 259: 14491–14497. pmid:6501303 doi: 10.1038/310503a0
|
[54] | Huang HB, Horiuchi A, Watanabe T, Shih SR, Tsay HJ, Li HC, et al. Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. J Biol Chem 1999; 274: 7870–7878. pmid:10075680 doi: 10.1074/jbc.274.12.7870
|
[55] | Connor JH, Frederick D, Huang H, Yang J, Helps NR, Cohen PT, et al. Cellular mechanisms regulating protein phosphatase-1. A key functional interaction between inhibitor-2 and the type 1 protein phosphatase catalytic subunit. J Biol Chem 2000; 275: 18670–18675. pmid:10748125 doi: 10.1074/jbc.m909312199
|
[56] | Hemmings HC Jr., Nairn AC, Elliott JI, Greengard P Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. J Biol Chem 1990;265: 20369–20376. pmid:2173704
|
[57] | Desdouits F, Siciliano JC, Greengard P, Girault JA Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin. Proc Natl Acad Sci U S A 1995; 92: 2682–2685. pmid:7708705 doi: 10.1073/pnas.92.7.2682
|
[58] | Herman SB, Juilfs DM, Fauman EB, Juneau P, Menetski JP Analysis of a mutation in phosphodiesterase type 4 that alters both inhibitor activity and nucleotide selectivity. Mol Pharmacol 2000; 57: 991–999. pmid:10779384
|
[59] | Vanhoose AM, Winder DG NMDA and beta1-adrenergic receptors differentially signal phosphorylation of glutamate receptor type 1 in area CA1 of hippocampus. J Neurosci 2003; 23: 5827–5834. pmid:12843287
|
[60] | Segal M, Manor D Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate. J Physiol 1992; 448: 655–676. pmid:1534370 doi: 10.1113/jphysiol.1992.sp019063
|
[61] | Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, et al. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 2003; 100: 940–945. pmid:12552097 doi: 10.1073/pnas.262787199
|
[62] | Daaka Y, Luttrell LM, Lefkowitz RJ Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390: 88–91. pmid:9363896 doi: 10.1038/36362
|
[63] | Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching. Cell Signal 2004; 16: 1397–1403. pmid:15381255 doi: 10.1016/j.cellsig.2004.05.002
|
[64] | Thomson M, Gunawardena J The rational parameterization theorem for multisite post-translational modification systems. J Theor Biol 2009; 261: 626–636. doi: 10.1016/j.jtbi.2009.09.003. pmid:19765594
|
[65] | Dushek O, van der Merwe PA, Shahrezaei V Ultrasensitivity in multisite phosphorylation of membrane-anchored proteins. Biophys J 2011; 100: 1189–1197. doi: 10.1016/j.bpj.2011.01.060. pmid:21354391
|
[66] | Ferrell JE Jr., Bhatt RR Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 1997; 272: 19008–19016. pmid:9228083 doi: 10.1074/jbc.272.30.19008
|
[67] | Liggett SB, Bouvier M, Hausdorff WP, O'Dowd B, Caron MG, Lefkowitz RJ Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant beta 2-adrenergic receptors lacking phosphorylation sites. Mol Pharmacol 1989; 36: 641–646. pmid:2554115
|
[68] | Chen-Goodspeed M, Lukan AN, Dessauer CW Modeling of Galpha(s) and Galpha(i) regulation of human type V and VI adenylyl cyclase. J Biol Chem 2005; 280: 1808–1816. pmid:15545274 doi: 10.1074/jbc.m409172200
|
[69] | Tran TM, Friedman J, Baameur F, Knoll BJ, Moore RH, Clark RB Characterization of beta2-adrenergic receptor dephosphorylation: Comparison with the rate of resensitization. Mol Pharmacol 2007; 71: 47–60. pmid:17012621 doi: 10.1124/mol.106.028456
|
[70] | Nielsen MD, Chan GC, Poser SW, Storm DR Differential regulation of type I and type VIII Ca2+-stimulated adenylyl cyclases by Gi-coupled receptors in vivo. J Biol Chem 1996; 271: 33308–33316. pmid:8969190 doi: 10.1074/jbc.271.52.33308
|
[71] | Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, et al. The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 2010; 5: e11725. doi: 10.1371/journal.pone.0011725. pmid:20661441
|
[72] | Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, Malinow R Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 2007; 131: 160–173. pmid:17923095 doi: 10.1016/j.cell.2007.09.017
|
[73] | Skeberdis VA, Chevaleyre V, Lau CG, Goldberg JH, Pettit DL, Suadicani SO, et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 2006; 9: 501–510. pmid:16531999 doi: 10.1038/nn1664
|
[74] | Murphy JA, Stein IS, Lau CG, Peixoto RT, Aman TK, Kaneko N, et al. Phosphorylation of Ser1166 on GluN2B by PKA Is Critical to Synaptic NMDA Receptor Function and Ca2+ Signaling in Spines. J Neurosci 2014; 34: 869–879. doi: 10.1523/JNEUROSCI.4538-13.2014. pmid:24431445
|
[75] | Kim M, Park AJ, Havekes R, Chay A, Guercio L, Oliveira RF, et al. Colocalization of PKA with adenylyl cyclase enhances PKA activity during L-LTP induction. PLoS Comput Biol 2011; 7: e1002085. doi: 10.1371/journal.pcbi.1002084. pmid:21738458
|
[76] | Li X, Vadrevu S, Dunlop A, Day J, Advant N, Troeger J, et al. Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK. Biochem J 2010; 428: 55–65. doi: 10.1042/BJ20091672. pmid:20196770
|
[77] | Houslay MD, Adams DR PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370: 1–18. pmid:12444918 doi: 10.1042/bj20021698
|
[78] | Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, et al. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 2002; 298: 834–836. pmid:12399592 doi: 10.1126/science.1074683
|
[79] | Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, et al. RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 2005; 280: 33178–33189. pmid:16030021 doi: 10.1074/jbc.m414316200
|
[80] | Bird RJ, Baillie GS, Yarwood SJ Interaction with receptor for activated C-kinase 1 (RACK1) sensitizes the phosphodiesterase PDE4D5 towards hydrolysis of cAMP and activation by protein kinase C. Biochem J 2010; 432: 207–216. doi: 10.1042/BJ20101010. pmid:20819076
|
[81] | Tran TM, Friedman J, Qunaibi E, Baameur F, Moore RH, Clark RB Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the beta2-adrenergic receptor using phosphoserine-specific antibodies. Mol Pharmacol 2004; 65: 196–206. pmid:14722251 doi: 10.1124/mol.65.1.196
|
[82] | Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem 2002; 277: 31249–31256. pmid:12063255 doi: 10.1074/jbc.m202753200
|
[83] | Taussig R, Tang WJ, Hepler JR, Gilman AG Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 1994; 269: 6093–6100. pmid:8119955
|
[84] | Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 2008; 283: 2949–2961. pmid:18045878 doi: 10.1074/jbc.m707009200
|
[85] | Xin W, Tran TM, Richter W, Clark RB, Rich TC Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling. J Gen Physiol 2008; 131: 349–364. doi: 10.1085/jgp.200709881. pmid:18347080
|
[86] | Shenoy SK, Lefkowitz RJ beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 2011; 32: 521–533. doi: 10.1016/j.tips.2011.05.002. pmid:21680031
|
[87] | Vayttaden SJ, Friedman J, Tran TM, Rich TC, Dessauer CW, Clark RB Quantitative modeling of GRK-mediated beta2AR regulation. PLoS Comput Biol 2010; 6: e1000647. doi: 10.1371/journal.pcbi.1000647. pmid:20098494
|
[88] | Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, Taubenfeld SM, et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 2008; 133: 666–680. doi: 10.1016/j.cell.2008.04.025. pmid:18485874
|
[89] | Abel T, Nguyen PV Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. Prog Brain Res 2008; 169: 97–115. doi: 10.1016/S0079-6123(07)00006-4. pmid:18394470
|
[90] | Hoogland TM, Saggau P Facilitation of L-type Ca2+ channels in dendritic spines by activation of beta2 adrenergic receptors. J Neurosci 2004; 24: 8416–8427. pmid:15456814 doi: 10.1523/jneurosci.1677-04.2004
|
[91] | Willoughby D, Halls ML, Everett KL, Ciruela A, Skroblin P, Klussmann E, et al. A key phosphorylation site in AC8 mediates regulation of Ca(2+)-dependent cAMP dynamics by an AC8-AKAP79-PKA signalling complex. J Cell Sci 2012; 125: 5850–5859. doi: 10.1242/jcs.111427. pmid:22976297
|
[92] | Novak B, Tyson JJ Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 2008; 9: 981–991. doi: 10.1038/nrm2530. pmid:18971947
|
[93] | Yang Q, Ferrell JE Jr. The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat Cell Biol 2013; 15: 519–525. doi: 10.1038/ncb2737. pmid:23624406
|
[94] | Becskei A, Serrano L Engineering stability in gene networks by autoregulation. Nature 2000; 405: 590–593. pmid:10850721 doi: 10.1038/35014651
|
[95] | Mika D, Richter W, Conti M A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc Natl Acad Sci U S A 2015; 112: 2023–2028. doi: 10.1073/pnas.1419992112. pmid:25646485
|
[96] | Baillie GS, MacKenzie SJ, McPhee I, Houslay MD Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases. Br J Pharmacol 2000; 131: 811–819. pmid:11030732 doi: 10.1038/sj.bjp.0703636
|
[97] | Hoffmann R, Baillie GS, MacKenzie SJ, Yarwood SJ, Houslay MD The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J 1999; 18: 893–903. pmid:10022832 doi: 10.1093/emboj/18.4.893
|
[98] | Vuchak LA, Tsygankova OM, Prendergast GV, Meinkoth JL Protein kinase A and B-Raf mediate extracellular signal-regulated kinase activation by thyrotropin. Mol Pharmacol 2009; 76: 1123–1129. doi: 10.1124/mol.109.060129. pmid:19720729
|
[99] | MacKenzie SJ, Houslay MD Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J 2000; 347: 571–578. pmid:10749688 doi: 10.1042/bj3470571
|
[100] | Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 1997; 272: 19125–19132. pmid:9235901 doi: 10.1074/jbc.272.31.19125
|
[101] | Luttrell LM, Daaka Y, Della Rocca GJ, Lefkowitz RJ protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of Erk kinases. J Biol Chem 1997; 272: 31648–31656. pmid:9395506 doi: 10.1074/jbc.272.50.31648
|
[102] | Havekes R, Canton DA, Park AJ, Huang T, Nie T, Day JP, et al. Gravin orchestrates protein kinase A and beta2-adrenergic receptor signaling critical for synaptic plasticity and memory. J Neurosci 2012; 32: 18137–18149. doi: 10.1523/JNEUROSCI.3612-12.2012. pmid:23238728
|
[103] | Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, et al. Multiple ligand-specific conformations of the beta2-adrenergic receptor. Nat Chem Biol 2011; 7: 692–700. doi: 10.1038/nchembio.634. pmid:21857662
|
[104] | Hayer A, Bhalla US Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput Biol 2005; 1: 137–154. pmid:16110334 doi: 10.1371/journal.pcbi.0010020
|
[105] | Mana MJ, Grace AA Chronic cold stress alters the basal and evoked electrophysiological activity of rat locus coeruleus neurons. Neuroscience 1997; 81: 1055–1064. pmid:9330367 doi: 10.1016/s0306-4522(97)00225-x
|