When the event of interest never occurs for
a proportion of subjects during the study period, survival models with a cure
fraction are more appropriate in analyzing this type of data. Considering the
non-linear relationship between response variable and covariates, we propose a
class of generalized transformation models motivated by Zeng et al. [1]
transformed proportional time cure model, in which fractional polynomials are
used instead of the simple linear combination of the covariates. Statistical
properties of the proposed models are investigated, including identifiability
of the parameters, asymptotic consistency, and asymptotic normality of the
estimated regression coefficients. A simulation study is carried out to examine
the performance of the power selection procedure. The generalized
transformation cure rate models are applied to the First National Health and
Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the
purpose of examining the relationship between survival time of patients and
several risk factors.
References
[1]
Zeng, D., Yin, G. and Ibrahim, J.G. (2006) Semiparametric Transformation Models for Survival Data with a Cure Fraction. Journal of the American Statistical Association, 101, 670-684.
http://dx.doi.org/10.1198/016214505000001122
[2]
Cox, D.R. (1972) Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34, 187-220.
http://www.jstor.org/stable/2985181?seq=1#page_scan_tab_contents
[3]
Berkson, J. and Cage, R.P. (1952) Survival Curve for Cancer Patients Following Treatment. Journal of the American Statistical Association, 47, 501-505. http://dx.doi.org/10.1080/01621459.1952.10501187
[4]
Farewell, V.T. (1982) The Use of Mixtures Models for the Analysis of Survival Data with Long-Term Survivors. Biometrics, 38, 1041-1046. http://dx.doi.org/10.2307/2529885
[5]
Gary, R.J. and Tsiatis, A.A. (1989) A Linear Rank Test for Use When the Main Interest Is in Differences in Cure Rates. Biometrics, 45, 899-904. http://dx.doi.org/10.2307/2531691
[6]
Sposto, R., Sather, H.N. and Baker, S.A. (1992) A Comparison of Tests of the Difference in the Proportion of Patients Who Are Cured. Biometrics, 48, 87-99. http://dx.doi.org/10.2307/2532741
[7]
Laska, E.M. and Meisner, M.J. (1992) Nonparametric Estimation and Testing in a Cure Model. Biometrics, 48, 1223-1234. http://dx.doi.org/10.2307/2532714
[8]
Sy, J.P. and Taylor, J.M.G. (2000) Estimation in a Cox Proportional Hazards Cure Model. Biometrics, 56, 227-236.
http://dx.doi.org/10.1111/j.0006-341X.2000.00227.x
[9]
Lu, W. and Ying, Z. (2004) On Semiparametric Transformation Cure Models. Biometrika, 91, 331-343.
http://dx.doi.org/10.1093/biomet/91.2.331
[10]
Ibrahim, J.G., Chen, M.-H. and Sinha, D. (2001) Bayesian Survival Analysis. Springer Series in Statistics, First Edition, Springer, New York. http://dx.doi.org/10.1007/978-1-4757-3447-8
[11]
Yakovlev, A.Y. and Tsodikov, A.D. (1996) Stochastic Models of Tumor Latency and Their Biostatistical Application. First Edition, World Scientific, Singapore.
[12]
Tsodikov, A. (1998) A Proportional Hazards Model Taking Account of Long-Term Survivors. Biometrics, 54, 1508-1516. http://dx.doi.org/10.2307/2533675
[13]
Chen, M.-H., Ibrahim, J.G. and Sinha, D. (1999) A New Bayesian Model for Survival Data with a Surviving Fraction. Journal of the American Statistical Association, 94, 909-919. http://dx.doi.org/10.1080/01621459.1999.10474196
[14]
Royston, P. and Altman, D.G. (1994) Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modeling. Applied Statistics, 43, 429-467. http://dx.doi.org/10.2307/2986270
[15]
Stone, C.J. (1985) Additive Regression and Other Nonparametric Models. Annals of Statistics, 13, 689-705. http://dx.doi.org/10.1214/aos/1176349548
[16]
Brier, G.W. (1950) Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review, 78, 1-3. http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
[17]
May, M., Roystion, P., Egger, M., Justice, A.C. and Sterne, J.A. (2004) Development and Validation of a Prognostic Model for Survival Time Data: Application to Prognosis of HIV Positive Patients Treated with Antiretroviral Therapy. Statistics in Medicine, 23, 2375-2398. http://dx.doi.org/10.1002/sim.1825
[18]
van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes. Springer Series in Statistics, First Edition, Springer, New York. http://dx.doi.org/10.1007/978-1-4757-2545-2