The flexible use of sensors has made them an attractive device to be deployed in almost every field of life such as health, military and home. Recent advancement in electronics and wireless communications has witnessed the development of low cost-sensor devices. While wireless sensor networks (WSNs) are flexible to use and less costly, they need to be more energy-efficient as they are operated by the battery. Mostly they are deployed in harsh environments where it is very difficult to change the batteries frequently. Several medium access control (MAC) algorithms have been developed for the energy-efficient acquisition of the wireless channel, however, none of them are satisfactory. In this paper, we proposed a medium access control algorithm called MAC-PE. MAC-PE is based on the concept of prioritized frames where prioritized frames are transmitted urgently. In addition, it uses scheduled-based MAC instead of accessing channel randomly. We found MAC-PE (Power-Efficient MAC) was efficient in terms of power consumption without sacrificing on the performance using NS-2.
References
[1]
Ye, W., Heidemann, J. and Estrin, D. (2004) Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM Transactions on Networking, 12, 493-506.
[2]
Razaque, A. and Elleithy, K.M. (2014) Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks. Sensors, 14, 5074-5117. http://dx.doi.org/10.3390/s140305074
[3]
Razaque, A. and Elleithy, K. (2015) Nomenclature of Medium Access Control Protocol over Wireless Sensor Networks. IETE Technical Review, 1, 1-2. http://dx.doi.org/10.1080/02564602.2015.1057769
[4]
Nguyen, K. and Ji, Y. (2012) Asynchronous MAC Protocol with QOS Awareness in Wireless Sensor Networks. IEEE Global Communications Conference (GLOBECOM), Anaheim, 3-7 December 2012, 555-559.
http://dx.doi.org/10.1109/glocom.2012.6503171
[5]
Chouhan, L. and Trivedi, A. (2012) Priority Based MAC Scheme for Cognitive Radio Network: A Queuing Theory Modelling. 2012 9th International Conference on Wireless and Optical Communications Networks (WOCN), Indore, 20-22 September 2012, 1-5. http://dx.doi.org/10.1109/wocn.2012.6331886
[6]
Razaque, A. and Elleithy, K. (2015) Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks. Sensors, 15, 16162-16195. http://dx.doi.org/10.3390/s150716162
[7]
Ben-Othman, J., Mokdad, L. and Yahya, B. (2011) An Energy Efficient Priority-Based QOS MAC Protocol for Wireless Sensor Networks. IEEE International Conference on Communications (ICC), Kyoto, 5-9 June 2011, 1-6.
http://dx.doi.org/10.1109/icc.2011.5962414
[8]
Yang, H. and Sikdar, B. (2012) Queuing Analysis of Polling Based Wireless MAC Protocols with Sleep-Wake Cycles. IEEE Transactions on Communications, 60, 2427-2433.
[9]
Shiang, H. and Schaar, M. (2007) Multi-User Video Streaming over Multi-Hop Wireless Networks: A Distributed, Cross-Layer Approach Based on Priority Queuing. IEEE Journal on Selected Areas in Communications, 25, 770-785.
[10]
Lin, Q., Chuan, D.H. and Jiao, X. (2012) Study of Medium Access Control Protocol Based on Adaptive Back off Window in Wireless Sensor Network. International Symposium on Information Technology in Medicine and Education (ITME), 2, 885-888.
[11]
Lagkas, T., Angelidis, P., Stratogiannis, D. and Tsiropoulos, G. (2010) Analysis of Queue Load Effect on Channel Access Prioritization in Wireless Sensor Networks. 6th IEEE International Conference on Distributed Computing in Sensor Systems Workshops (DCOSSW), Santa Barbara, 21-23 June 2010, 1-6.
http://dx.doi.org/10.1109/dcossw.2010.5593273
[12]
Gao, L. (2011) A Energy Consumption Improvements of S-MAC in WSN. International Conference on Internet Technology and Applications (ITAP), Wuhan, 16-18 August 2011, 1-3. http://dx.doi.org/10.1109/itap.2011.6006172
[13]
Priya, B. and Manohar, S. (2013) CH-MAC: Congestion Control Hybrid MAC for Wireless Sensor Network. 4th International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, 4-6 July 2013, 1-6. http://dx.doi.org/10.1109/icccnt.2013.6726686
[14]
Rizvi, S., Karpinski, K. and Razaque, A. (2015) Novel Architecture of Self-Organized Mobile Wireless Sensor Networks. Journal of Computing Science and Engineering, 9, 163-176. http://dx.doi.org/10.5626/JCSE.2015.9.4.163
[15]
Razaque, A. and Elleithy, K.M. (2014) Low Duty Cycle, Energy-Efficient and Mobility-Based Boarder Node—MAC Hybrid Protocol for Wireless Sensor Networks. Journal of Signal Processing Systems, 81, 265-284.
[16]
Van Dam, T. and Langendoen, K. (2003) An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, New York, 5 November 2003, 171-180. http://dx.doi.org/10.1145/958491.958512
[17]
Ye, W., Heidemann, J. and Estrin, D. (2002) An Energy-Efficient MAC Protocol for Wireless Sensor Networks. Proceedings of IEEE 21st Annual Joint Conference of the IEEE Computer and Communications Societies, 3, 1567-1576.
[18]
Brownfield, M.I., Mehrjoo, K., Fayez, A.S. and Davis IV, N.J. (2006) Wireless Sensor Network Energy-Adaptive Mac Protocol. 3rd IEEE Consumer Communications and Networking Conference (CCNC), 2, 778-782.