We present Bayes estimators, highest
posterior density (HPD) intervals, and maximum likelihood estimators (MLEs),
for the Maxwell failure distribution based on Type II censored data, i.e. using
the first r lifetimes from a group of n components under test.
Reliability/Hazard function estimates, Bayes predictive distributions and
highest posterior density prediction intervals for a future observation are
also considered. Two data examples and a Monte Carlo simulation study are used
to illustrate the results and to compare the performances of the different
methods.
References
[1]
Aitchison, J. and Dunsmore, I.R. (1975) Statistical Prediction Analysis. University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511569647
[2]
Chhikara, R.S. and Guttman, I. (1982) Prediction Limits for the Inverse Gaussian Distribution. Technometrics, 24, 319-324. http://dx.doi.org/10.2307/1267827
[3]
Dunsmore, I.R. (1974) The Bayesian Predictive Distribution in Life Testing. Technometrics, 16, 455-466. http://dx.doi.org/10.1080/00401706.1974.10489216
[4]
Evans, I.G. and Nigm, A.H.M. (1980) Bayesian Prediction for the Left-Truncated Exponential Distribution. Technometrics, 22, 201-204. http://dx.doi.org/10.1080/00401706.1980.10486135
[5]
Howlader, H.A. (1985) HPD Prediction Intervals for Rayleigh Distribution. IEEE Transactions on Reliability, R-34, 121-123.
[6]
Lawless, J.F. (1977) Prediction Intervals for the Two Parameter Exponential Distribution. Technometrics, 19, 469-472. http://dx.doi.org/10.1080/00401706.1977.10489587
[7]
Likes, J. (1974) Prediction of s-th ordered observation for the two parameter exponential distribution. Technometrics, 16, 241-244. http://dx.doi.org/10.1080/00401706.1974.10489180
[8]
Tyagi, R.K. and Battacharya, S.K. (1989a) Bayes Estimation of the Maxwell’s Velocity Distribution Function. Statistica, 4, 563-567.
[9]
Tyagi, R.K. and Battacharya, S.K. (1989b) A Note on the MVU Estimation of the Maxwell’s Failure Distribution. Estadistica, 41, 73-79.
[10]
Howlader, H.A. and Hossain, A.M. (1998) Bayesian Prediction Intervals for Maxwell Parameters. Metron-Interna tional Journal of Statistics, LVI, 97-106.
[11]
Balakrishnan, N. (1990) On the Maximum Likelihood Estimation of the Location and Scale Parameters of Exponential Distribution Based on Multiple Type II Censored Samples. Journal of Applied Statistics, 17, 55-61. http://dx.doi.org/10.1080/757582647
[12]
Bekker, A. and Roux, J.J. (2005) Reliability Characteristics of the Maxwell Distribution: A Bayes Estimation Study. Communications in Statistics—Theory and Methods, 34, 2169-2178. http://dx.doi.org/10.1080/STA-200066424
[13]
Chaturvedi, A. and Rani, U. (1998) Classical and Bayesian Reliability Estimation of the Generalized Maxwell Failure Distribution. Statist. Research, 32, 113-120.
[14]
Hartigan, J.A. (1964) Invariant Prior Distributions. The Annals of Mathematical Statistics, 35, 836-845. http://dx.doi.org/10.1214/aoms/1177703583
[15]
Kong, F. and Fei, H. (1996) Limit Theorems for the Maximum Likelihood Estimate under General Multply Type II Censoring. Annals of the Institute of Statistical Mathematics, 48, 731-755. http://dx.doi.org/10.1007/BF00052330
[16]
Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2012) The BUGS Book: A Practical Introduction to Bayesian Analysis. Chapman and Hall/CRC, Bacon Raton.
[17]
Liu, Y., Gelman, A. and Zheng, T. (2013) Simulation-Efficient Shortest Probability intervals. Unpublished Manuscript, 1-22. http://arxiv.org/pdf/1302.2142.pdf
[18]
Pradhan, B. and Kundu, B. (2011) Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution. Journal of Statistical Computation and Simulation, 81, 1187-1198. http://dx.doi.org/10.1080/00949651003796335
[19]
Kazmi, S.M.A., Aslam, M. and Ali, S. (2012) Preference Prior for the Class of Life-Time Distributions under Different Loss Functions. Pakistan Journal of Statistics, 28, 467-484.