Modern high speed printing machines are able to print up to 700 m/min. At this rate, little excita-tions lead to vibrations, which may lead to loss of contact between the rollers (bouncing). This bouncing results in white stripes, being visible on the printed image. To enable the simulation of the whole printing process, including effects like bouncing, a discrete multibody model is developed. The rollers are modeled by several rigid bodies. These bodies are connected to each other by rotational springs, which allow simulation of the first bending eigenmodes of each roller. The contact area between the rollers is modeled by several nonlinear translational springs and damping elements. These elements change their stiffness and damping values depending on the distance between the rollers. If a defined distance is exceeded, the values become zero, which represents the loss of contact (bouncing). The unknown spring and damping elements of this model are parametrized with help of an experimental modal analysis. This paper presents the development of a flexible multibody model to simulate nonlinear effects in printing process.
References
[1]
Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002) Concepts and Applications of Finite Element Analysis. Wiley, New York.
[2]
Brenner, S.C. and Scott, R. (2008) The Mathematical Theory of Finite Element Methods. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-75934-0
[3]
Dhatt, G., Touzot, G. and Lefrançois, E. (2012) Finite Element Method. Wiley, London.
http://dx.doi.org/10.1002/9781118569764
[4]
Schwerin, R.V. (1999) Multibody System Simulation: Numerical Methods, Algorithms, and Software. Springer, Berlin, Heidelberg, New York. http://dx.doi.org/10.1007/978-3-642-58515-9
[5]
Coutinho, M.G. (2001) Dynamic Simulations of Multibody Systems. Springer, New York.
http://dx.doi.org/10.1007/978-1-4757-3476-8
[6]
Altintas, Y., Brecher, C., Weck, M. and Witt, S. (2005) Virtual Machine Tool. CIRP Annals—Manufacturing Technology, 54, 115-138. http://dx.doi.org/10.1016/S0007-8506(07)60022-5
[7]
Litwinski, K.M., Peters, R., Overmeyer, L. and Denkena, B. (2011) Real Time Simulation Approach for the Machine Tool Design and Error Compensation. MM Science Journal—International Conference on Machine Tools, Automation, Technology and Robotics, 9, 1-7.
[8]
Craig Jr., R.R. and Bampton, M.C.C. (1968) Coupling of Substructures for Dynamic Analysis. AIAA Journal, 6, 1313-1319. http://dx.doi.org/10.2514/3.4741
[9]
Queins, M. (2005) Simulation des Dynamischen Verhaltens von Werkzeugmaschinen mit Hilfe Flexibler Mehrkör-permodelle. Dr.-Ing. Dissertation, RWTH, Aachen
[10]
Neithard, W. (2004) Methodik zur Simulation und Optimierung von Werkzeugmaschinen in der Konzept-und Entwurf-sphase auf Basis der Mehrkörpersimulation. Dr.-Ing. Dissertation, TH Karlsruhe.
[11]
Brecher, C. (2012) Integrative Production Technology for High-Wage Countries. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-21067-9
[12]
Hoffmann, F. (2008) Optimierung der Dynamischen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkörper-simulation. Dr.-Ing. Dissertation, RWTH Aachen, Werkzeugmaschinenlabor, Aachen.
[13]
Siedl, D. (2008) Simulation des Dynamischen Verhaltens von Werkzeugmaschinen Während Verfahrbewegungen. Dr.-Ing. Dissertation, TU München, München.
[14]
Zaeh, M. and Siedl, D.A. (2007) New Method for Simulation of Machining Performance by Integrating Finite Element and Multibody Simulation for Machine Tools. CIRP Annals—Manufacturing Technology, 56, 383-386.
http://dx.doi.org/10.1016/j.cirp.2007.05.089
[15]
Torrez Torres, J. (2004) Aktive Regelung eines Linearmotors mit Dominanten Mechanischen Resonanzstellen. Dr.-Ing. Dissertation, TU Braunschweig, Braunschweig.
[16]
Hackelöer, F. (2014) Erweiterung der Einsatzmöglichkeiten von Magnetführungen. Dr.-Ing. Dissertation, Leibniz Universität Hannover, Hannover.
[17]
Denkena, B., Eckl, M. and Lepper, T. (2015) Advanced Control Strategies for Active Vibration Suppression in Laser Cutting Machines. International Journal of Automation Technology, 9, 425-435.
[18]
Denkena, B., Litwinski, K.M. and Eckl, M. (2015) Modeling and Compensation of the Interactions between Geometrical Errors and Drive Currents in Directly Driven Gantry Machine Tools. Production Engineering, 9, 257-267.
http://dx.doi.org/10.1007/s11740-015-0600-4
[19]
Dadios, E.P., Fernandez, P.S. and Williams, D.J. (2006) Genetic Algorithm on Line Controller for the Flexible Inverted Pendulum Problem. Journal of Advanced Computational Intelligence and Intelligent Informatics, 10.