全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates

DOI: 10.4236/ojs.2016.61003, PP. 14-24

Keywords: Bootstrap, Hypothesis Testing, Nonparametric Methods, Percentile Profiles, Wald Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

Testing the equality of percentiles (quantiles) between populations is an effective method for robust, nonparametric comparison, especially when the distributions are asymmetric or irregularly shaped. Unlike global nonparametric tests for homogeneity such as the Kolmogorv-Smirnov test, testing the equality of a set of percentiles (i.e., a percentile profile) yields an estimate of the location and extent of the differences between the populations along the entire domain. The Wald test using bootstrap estimates of variance of the order statistics provides a unified method for hypothesis testing of functions of the population percentiles. Simulation studies are conducted to show performance of the method under various scenarios and to give suggestions on its use. Several examples are given to illustrate some useful applications to real data.

References

[1]  Johnson, W.D., Beyl, R.A., Burton, J.H., Johnson, C.M., Romer, J.E. and Zhang, L. (2015) Use of Pearson’s Chi-Square for Testing Equality of Percentile Profiles across Multiple Populations. Open Journal of Statistics, 5, 412-420.
http://dx.doi.org/10.4236/ojs.2015.55043
[2]  Maritz, J.S. and Jarrett, R.G. (1978) A Note on Estimating the Variance of the Sample Median. Journal of the American Statistical Association, 52, 13-30.
http://dx.doi.org/10.1080/01621459.1978.10480027
[3]  Efron, B. (1979) Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7, 1-26.
http://dx.doi.org/10.1214/aos/1176344552
[4]  Bickel, P.J. and Freedman, D.A. (1981) Some Asymptotic Theory for the Bootstrap. The Annals of Statistics, 9, 1196-1217.
http://dx.doi.org/10.1214/aos/1176345637
[5]  Hall, P. and Martin, M.A. (1988) Exact Convergence Rate of Bootstrap Quantile Variance Estimator. Probability Theory and Related Fields, 80, 261-268.
http://dx.doi.org/10.1007/BF00356105
[6]  Hall, P. and Martin, M.A. (1991) On the Error Incurred Using the Bootstrap Variance Estimate When Constructing Confidence Intervals for Quantiles. Journal of Multivariate Analysis, 38, 70-81.
http://dx.doi.org/10.1016/0047-259X(91)90032-W
[7]  Cheung, K.Y. and Lee, S.M. (2005) Variance Estimation for Sample Quantiles Using the m out of n Bootstrap. Annals of the Institute of Statistical Mathematics, 57, 279-290.
http://dx.doi.org/10.1007/BF02507026
[8]  Wilcox, R.R. (1995) Comparing Two Independent Groups via Multiple Quantiles. Journal of the Royal Statistical Society, Series D, 44, 91-99.
http://dx.doi.org/10.2307/2348620
[9]  Hutson, A.D. and Ernst, M.D. (2000) The Exact Bootstrap Mean and Variance of an L-Estimator. Journal of the Royal Statistical Society, Series B, 62, 89-94.
http://dx.doi.org/10.1111/1467-9868.00221
[10]  Ghosh, M., Parr, W.C., Singh, K. and Babu, G.J. (1985) A Note on Bootstrapping the Sample Median. The Annals of Statistics, 12, 1130-1135.
http://dx.doi.org/10.1214/aos/1176346731
[11]  Babu, G.J. (1986) A Note on Bootstrapping the Variance of Sample Quantile. Annals of the Institute of Statistical Mathematics, 38, 439-443.
http://dx.doi.org/10.1007/BF02482530

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133