全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel

DOI: 10.1371/journal.pcbi.1004704

Full-Text   Cite this paper   Add to My Lib

Abstract:

Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

References

[1]  Yu FH, Catterall WA. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE. 2004;2004(253):re15. Epub 2004/10/07. stke.2532004re15 [pii] doi: 10.1126/stke.2532004re15 pmid:15467096.
[2]  Tombola F, Pathak MM, Isacoff EY. How does voltage open an ion channel? Annu Rev Cell Dev Bi. 2006;22:23–52. doi: 10.1146/Annurev.Cellbio.21.020404.145837 pmid:ISI:000242325100003.
[3]  Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Voltage-gated ion channels and gating modifier toxins. Toxicon. 2007;49(2):124–41. doi: 10.1016/J.Toxicon.2006.09.022 pmid:ISI:000244377500002.
[4]  Tillman TS, Cascio M. Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys. 2003;38(2):161–90. doi: 10.1385/Cbb:38:2:161 pmid:ISI:000183171600004.
[5]  Leaf A, Xiao YF, Kang JX, Billman GE. Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacol Therapeut. 2003;98(3):355–77. doi: 10.1016/S0163-7258(03)00039-1 pmid:ISI:000183588400005.
[6]  Xu XP, Erichsen D, Borjesson SI, Dahlin M, Amark P, Elinder F. Polyunsaturated fatty acids and cerebrospinal fluid from children on the ketogenic diet open a voltage-gated K channel: A putative mechanism of antiseizure action. Epilepsy Res. 2008;80(1):57–66. doi: 10.1016/J.Eplepsyres.2008.03.013 pmid:ISI:000257636600008.
[7]  Borjesson SI, Hammarstrom S, Elinder F. Lipoelectric modification of ion channel voltage gating by polyunsaturated fatty acids. Biophys J. 2008;95(5):2242–53. doi: 10.1529/Biophysj.108.130757 pmid:ISI:000258473900011.
[8]  Boland LM, Drzewiecki MM. Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels. Cell Biochem Biophys. 2008;52(2):59–84. doi: 10.1007/S12013-008-9027-2 pmid:ISI:000260064500001.
[9]  Yellen G. The moving parts of voltage-gated ion channels. Q Rev Biophys. 1998;31(3):239–95. doi: 10.1017/S0033583598003448 pmid:ISI:000080476700001.
[10]  Keynes RD, Elinder F. The screw-helical voltage gating of ion channels. P Roy Soc B-Biol Sci. 1999;266(1421):843–52. pmid:ISI:000079970900013. doi: 10.1098/rspb.1999.0714
[11]  Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000;80(2):555–92. pmid:ISI:000086032300001.
[12]  Jiang YX, Lee A, Chen JY, Ruta V, Cadene M, Chait BT, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):33–41. doi: 10.1038/Nature01580 pmid:ISI:000182561600032.
[13]  Long SB, Campbell EB, MacKinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309(5736):897–903. doi: 10.1126/Science.1116269 pmid:ISI:000231101400036.
[14]  Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 2007;450(7168):376–82. doi: 10.1038/Nature06265 pmid:ISI:000250918600045.
[15]  Pathak MM, Yarov-Yarovoy V, Agarwal G, Roux B, Barth P, Kohout S, et al. Closing in on the resting state of the shaker K+ channel. Neuron. 2007;56(1):124–40. doi: 10.1016/j.neuron.2007.09.023 pmid:WOS:000250289800015.
[16]  Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. P Natl Acad Sci USA. 2011;108(15):6109–14. doi: 10.1073/pnas.1102724108 pmid:WOS:000289413600040.
[17]  Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE. Mechanism of Voltage Gating in Potassium Channels. Science. 2012;336(6078):229–33. doi: 10.1126/science.1216533 pmid:WOS:000302703900050.
[18]  Henrion U, Renhorn J, Borjesson SI, Nelson EM, Schwaiger CS, Bjelkmar P, et al. Tracking a complete voltage-sensor cycle with metal-ion bridges. P Natl Acad Sci USA. 2012;109(22):8552–7. doi: 10.1073/pnas.1116938109 pmid:WOS:000304881700044.
[19]  Swartz KJ. Towards a structural view of gating in potassium channels. Nat Rev Neurosci. 2004;5(12):905–16. doi: 10.1038/Nrn1559 pmid:ISI:000225459300013.
[20]  Long SB, Campbell EB, MacKinnon R. Voltage sensor of kv1.2: Structural basis of electromechanical coupling. Science. 2005;309(5736):903–8. doi: 10.1126/Science.1116270 pmid:ISI:000231101400037.
[21]  Andersson M, Freites JA, Tobias DJ, White SH. Structural Dynamics of the S4 Voltage-Sensor Helix in Lipid Bilayers Lacking Phosphate Groups. J Phys Chem B. 2011;115(27):8732–8. doi: 10.1021/Jp2001964 pmid:ISI:000292479500008.
[22]  Leifert WR, McMurchie EJ, Saint DA. Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids. J Physiol-London. 1999;520(3):671–9. doi: 10.1111/J.1469-7793.1999.00671.X pmid:ISI:000083789900007.
[23]  Bendahhou S, Cummins TR, Agnew WS. Mechanism of modulation of the voltage-gated skeletal and cardiac muscle sodium channels by fatty acids. Am J Physiol-Cell Ph. 1997;272(2):C592–C600. pmid:ISI:A1997WJ63300027.
[24]  Hallaq H, Smith TW, Leaf A. Modulation of Dihydropyridine-Sensitive Calcium Channels in Heart-Cells by Fish Oil Fatty-Acids. P Natl Acad Sci USA. 1992;89(5):1760–4. doi: 10.1073/Pnas.89.5.1760 pmid:ISI:A1992HG68100050.
[25]  Kang JX, Leaf A. Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. P Natl Acad Sci USA. 1996;93(8):3542–6. doi: 10.1073/Pnas.93.8.3542 pmid:ISI:A1996UF74000073.
[26]  McKay MC, Worley JF. Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. Am J Physiol-Cell Ph. 2001;281(4):C1277–C84. pmid:ISI:000171061300023.
[27]  Xiao YF, Sigg DC, Leaf A. The antiarrhythmic effect of n-3 polyunsaturated fatty acids: Modulation of cardiac ion channels as a potential mechanism. J Membrane Biol. 2005;206(2):141–54. doi: 10.1007/S00232-005-0786-Z pmid:ISI:000234718200007.
[28]  Honore E, Barhanin J, Attali B, Lesage F, Lazdunski M. External Blockade of the Major Cardiac Delayed-Rectifier K+ Channel (Kv1.5) by Polyunsaturated Fatty-Acids. P Natl Acad Sci USA. 1994;91(5):1937–41. doi: 10.1073/Pnas.91.5.1937 pmid:ISI:A1994MZ09400071.
[29]  Borjesson SI, Elinder F. An electrostatic potassium channel opener targeting the final voltage sensor transition. J Gen Physiol. 2011;137(6):563–77. doi: 10.1085/Jgp.201110599 pmid:ISI:000291047100008.
[30]  Freeman JM, Vining EPG, Pillas DJ, Pyzik PL, Casey JC, Kelly MT. The efficacy of the ketogenic diet—1998: A prospective evaluation of intervention in 150 children. Pediatrics. 1998;102(6):1358–63. doi: 10.1542/Peds.102.6.1358 pmid:ISI:000077311500003.
[31]  Vining EPG, Freeman JM, Ballaban-Gil K, Camfield CS, Camfield PR, Holmes GL, et al. A multicenter study of the efficacy of the ketogenic diet. Arch Neurol-Chicago. 1998;55(11):1433–7. doi: 10.1001/Archneur.55.11.1433 pmid:ISI:000076983500009.
[32]  Lefevre F, Aronson N. Ketogenic diet for the treatment of refractory epilepsy in children: A systematic review of efficacy. Pediatrics. 2000;105(4). Artn E46 doi: 10.1542/Peds.105.4.E46 pmid:ISI:000086189400004.
[33]  Browne DL, Gancher ST, Nutt JG, Brunt ERP, Smith EA, Kramer P, et al. Episodic Ataxia Myokymia Syndrome Is Associated with Point Mutations in the Human Potassium Channel Gene, Kcna1. Nat Genet. 1994;8(2):136–40. doi: 10.1038/Ng1094-136 pmid:ISI:A1994PL12300014.
[34]  Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, et al. A potassium channel mutation in neonatal human epilepsy. Science. 1998;279(5349):403–6. doi: 10.1126/Science.279.5349.403 pmid:ISI:000071570800052.
[35]  Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18(1):25–9. doi: 10.1038/Ng0198-25 pmid:ISI:000071259600016.
[36]  Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, et al. Deletion of the K(v)1.1 potassium channel causes epilepsy in mice. Neuron. 1998;20(4):809–19. doi: 10.1016/S0896-6273(00)81018-1 pmid:ISI:000073346500018.
[37]  Eunson LH, Rea R, Zuberi SM, Youroukos S, Panayiotopoulos CP, Liguori R, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol. 2000;48(4):647–56. pmid:ISI:000089650400012. doi: 10.1002/1531-8249(200010)48:4<647::aid-ana12>3.3.co;2-h
[38]  Cooper EC. Potassium channels: How genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia. 2001;42:49–54. doi: 10.1046/J.1528-1157.2001.0420s5049.X pmid:ISI:000171483300009.
[39]  Wilder RM. The effect of ketonemia on course of epilepsy. Mayo Clin Bull. 1921;2:307–8.
[40]  Borjesson SI, Parkkari T, Hammarstrom S, Elinder F. Electrostatic Tuning of Cellular Excitability. Biophys J. 2010;98(3):396–403. doi: 10.1016/J.Bpj.2009.10.026 pmid:ISI:000274313200006.
[41]  Elinder F, Arhem P, Larsson HP. Localization of the extracellular end of the voltage sensor S4 in a potassium channel. Biophys J. 2001;80(4):1802–9. pmid:ISI:000167797800017. doi: 10.1016/s0006-3495(01)76150-4
[42]  Jiang YX, Ruta V, Chen JY, Lee A, MacKinnon R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 2003;423(6935):42–8. doi: 10.1038/Nature01581 pmid:ISI:000182561600033.
[43]  Jogini V, Roux B. Dynamics of the Kv1.2 voltage-gated K(+) channel in a membrane environment. Biophys J. 2007;93(9):3070–82. doi: 10.1529/Biophysj.107.112540 pmid:ISI:000250199300012.
[44]  Treptow W, Tarek M. Environment of the gating charges in the Kv1.2 Shaker potassium channel. Biophys J. 2006;90(9):L64–L6. doi: 10.1529/biophysj.106.080754 pmid:WOS:000236601100002.
[45]  Milescu M, Bosmans F, Lee S, Alabi AA, Il Kim J, Swartz KJ. Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol. 2009;16(10):1080–5. doi: 10.1038/Nsmb.1679 pmid:ISI:000270514200016.
[46]  Xiao YF, Kang JX, Morgan JP, Leaf A. Blocking Effects of Polyunsaturated Fatty-Acids on Na+ Channels of Neonatal Rat Ventricular Myocytes. P Natl Acad Sci USA. 1995;92(24):11000–4. doi: 10.1073/Pnas.92.24.11000 pmid:ISI:A1995TF89100037.
[47]  Hong MP, Kim HI, Shin YK, Lee CS, Park M, Song JH. Effects of free fatty acids on sodium currents in rat dorsal root ganglion neurons. Brain Res. 2004;1008(1):81–91. doi: 10.1016/J.Brainres.2004.02.033 pmid:ISI:000221211900010.
[48]  Danthi SJ, Enyeart JA, Enyeart JJ. Modulation of native T-type calcium channels by omega-3 fatty acids. Biochem Bioph Res Co. 2005;327(2):485–93. doi: 10.1016/J.Bbrc.2004.12.033 pmid:ISI:000226364000015.
[49]  Decher N, Streit AK, Rapedius M, Netter MF, Marzian S, Ehling P, et al. RNA editing modulates the binding of drugs and highly unsaturated fatty acids to the open pore of Kv potassium channels. Embo J. 2010;29(13):2101–13. doi: 10.1038/Emboj.2010.88 pmid:ISI:000279630600003.
[50]  Liin SI, Silvera Ejneby M, Barro-Soria R, Skarsfeldt MA, Larsson JE, Starck Harlin F, et al. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel. Proc Natl Acad Sci U S A. 2015;112(18):5714–9. Epub 2015/04/23. doi: 10.1073/pnas.1503488112 1503488112 [pii]. pmid:25901329.
[51]  Zheng HF, Li XL, Jin ZY, Sun JB, Li ZL, Xu WX. Effects of unsaturated fatty acids on calcium-activated potassium current in gastric myocytes of guinea pigs. World J Gastroentero. 2005;11(5):672–5. pmid:ISI:000208100100011. doi: 10.3748/wjg.v11.i5.672
[52]  Eldho NV, Feller SE, Tristram-Nagle S, Polozov IV, Gawrisch K. Polyunsaturated docosahexaenoic vs docosapentaenoic acid—Differences in lipid matrix properties from the loss of one double bond. J Am Chem Soc. 2003;125(21):6409–21. doi: 10.1021/Ja029029o pmid:ISI:000183031800026.
[53]  Soubias O, Gawrisch K. Docosahexaenoyl chains isomerize on the sub-nanosecond time scale. J Am Chem Soc. 2007;129(21):6678–9. doi: 10.1021/Ja068856c pmid:ISI:000246686700008.
[54]  Feller SE, Gawrisch K, MacKerell AD. Polyunsaturated fatty acids in lipid bilayers: Intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc. 2002;124(2):318–26. doi: 10.1021/Ja0118340 pmid:ISI:000173218400027.
[55]  Feller SE. Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem Phys Lipids. 2008;153(1):76–80. doi: 10.1016/J.Chemphyslip.2008.02.013 pmid:ISI:000256654200009.
[56]  Feller SE, Gawrisch K. Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. Curr Opin Struc Biol. 2005;15(4):416–22. doi: 10.1016/J.Sbi.2005.07.002 pmid:ISI:000231531300007.
[57]  Ottosson NE, Liin SI, Elinder F. Drug-induced ion channel opening tuned by the voltage sensor charge profile. J Gen Physiol. 2014;143(2):173–82. doi: 10.1085/Jgp.201311087 pmid:ISI:000330628500006.
[58]  Xu YP, Ramu Y, Shin HG, Yamakaze J, Lu Z. Energetic role of the paddle motif in voltage gating of Shaker K+ channels. Nat Struct Mol Biol. 2013;20(5):574-+. doi: 10.1038/nsmb.2535 pmid:WOS:000318617000010.
[59]  Kasimova MA, Zaydman MA, Cui JM, Tarek M. PIP2-dependent coupling is prominent in Kv7.1 due to weakened interactions between S4-S5 and S6. Sci Rep-Uk. 2015;5. Artn 7474 doi: 10.1038/Srep07474 pmid:WOS:000347795300001.
[60]  Chen L, Zhang Q, Qiu Y, Li Z, Chen Z, Jiang H, et al. Migration of PIP2 lipids on voltage-gated potassium channel surface influences channel deactivation. Sci Rep. 2015;5:15079. doi: 10.1038/srep15079 pmid:26469389.
[61]  Mathur R, Zheng J, Yan YY, Sigworth FJ. Role of the S3-S4 linker in Shaker potassium channel activation. J Gen Physiol. 1997;109(2):191–9. doi: 10.1085/Jgp.109.2.191 pmid:ISI:A1997WH33300008.
[62]  Gonzalez C, Rosenman E, Bezanilla F, Alvarez O, Latorre R. Modulation of the Shaker K+ channel gating kinetics by the S3-S4 linker. J Gen Physiol. 2000;115(2):193–207. doi: 10.1085/Jgp.115.2.193 pmid:ISI:000085455100007.
[63]  Sali A, Blundell TL. Comparative Protein Modeling by Satisfaction of Spatial Restraints. J Mol Biol. 1993;234(3):779–815. doi: 10.1006/Jmbi.1993.1626 pmid:ISI:A1993MK79900020.
[64]  Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2007;Chapter 2:Unit 2 9. Epub 2008/04/23. doi: 10.1002/0471140864.ps0209s50 pmid:18429317.
[65]  Melo F, Sanchez R, Sali A. Statistical potentials for fold assessment. Protein Sci. 2002;11(2):430–48. doi: 10.1002/Pro.110430 pmid:ISI:000173352700026.
[66]  Berger O, Edholm O, Jahnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997;72(5):2002–13. pmid:ISI:A1997WV98400009. doi: 10.1016/s0006-3495(97)78845-3
[67]  Wolf MG, Hoefling M, Aponte-Santamaria C, Grubmuller H, Groenhof G. g_membed: Efficient Insertion of a Membrane Protein into an Equilibrated Lipid Bilayer with Minimal Perturbation. J Comput Chem. 2010;31(11):2169–74. doi: 10.1002/Jcc.21507 pmid:ISI:000279511200009.
[68]  Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78(8):1950–8. doi: 10.1002/Prot.22711 pmid:ISI:000277767700012.
[69]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 1983;79(2):926–35. doi: 10.1063/1.445869 pmid:ISI:A1983QZ31500046.
[70]  Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, et al. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone phi, psi and Side-Chain chi(1) and chi(2) Dihedral Angles. J Chem Theory Comput. 2012;8(9):3257–73. doi: 10.1021/Ct3004000x pmid:ISI:000308830700029.
[71]  Yesselman JD, Price DJ, Knight JL, Brooks CL. MATCH: An Atom-Typing Toolset for Molecular Mechanics Force Fields. J Comput Chem. 2012;33(2):189–202. doi: 10.1002/Jcc.21963 pmid:ISI:000297852600008.
[72]  Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. Gromacs: Fast, Flexible, and Free. J Comput Chem. 2005;26(16):1701–18. doi: 10.1002/Jcc.20291 pmid:ISI:000233021400004.
[73]  Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29(7):845–54. doi: 10.1093/Bioinformatics/Btt055 pmid:ISI:000316695700004.
[74]  Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–72. doi: 10.1002/(Sici)1096-987x(199709)18:12<1463::Aid-Jcc4>3.0.Co;2-H pmid:ISI:A1997XT81100004.
[75]  Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method. J Chem Phys. 1995;103(19):8577–93. doi: 10.1063/1.470117 pmid:ISI:A1995TE36400026.
[76]  Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4(1):116–22. doi: 10.1021/Ct700200b pmid:ISI:000252198200012.
[77]  Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–47. doi: 10.1021/Ct700301q pmid:ISI:000254277900007.
[78]  Parrinello M, Rahman A. Polymorphic Transitions in Single-Crystals—a New Molecular-Dynamics Method. J Appl Phys. 1981;52(12):7182–90. doi: 10.1063/1.328693 pmid:ISI:A1981MT07800024.
[79]  Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1). Artn 014101 doi: 10.1063/1.2408420 pmid:ISI:000243380000005.
[80]  Knight CJ, Hub JS. MemGen: A general web server for the setup of lipid membrane simulation systems. Submitted.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133