全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolutionary and Functional Relationships in the Truncated Hemoglobin Family

DOI: 10.1371/journal.pcbi.1004701

Full-Text   Cite this paper   Add to My Lib

Abstract:

Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.

References

[1]  Chain PSG, Grafham D V, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, et al. Genome project standards in a new era of sequencing. Science (80-.). 2009;326(5950):236–7. doi: 10.1126/science.1180614
[2]  Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215(3):403–10. pmid:2231712 doi: 10.1016/s0022-2836(05)80360-2
[3]  Eddy S. A New Generation of Homology Search Tools Based on Probabilistic Inference. Genome Inf. 2009;23(1):205–11. doi: 10.1142/9781848165632_0019
[4]  Nicoletti FP, Comandini A, Bonamore A, Boechi L, Boubeta FM, Feis A, et al. Sulfide Binding Properties of Truncated Hemoglobins. Biochemistry. 2010 Mar 16;49(10):2269–78. doi: 10.1021/bi901671d. pmid:20102180
[5]  Capece L, Boechi L, Perissinotti LL, Arroyo-Ma?ez P, Bikiel DE, Smulevich G, et al. Small ligand-globin interactions: Reviewing lessons derived from computer simulation. Biochim. Biophys. Acta—Proteins Proteomics. 2013. doi: 10.1016/j.bbapap.2013.02.038
[6]  Milani M, Pesce A, Nardini M, Ouellet H, Ouellet Y, Dewilde S, et al. Structural Bases for Heme Binding and Diatomic Ligand Recognition in Truncated Hemoglobins. J. Inorg. Biochem. 2005 Jan;99(1):97–109. pmid:15598494 doi: 10.1016/j.jinorgbio.2004.10.035
[7]  Vinogradov SN, Tinajero-trejo M, Poole RK, Hoogewijs D. Bacterial and Archaeal Globins—A Revised Perspective. BBA—Proteins Proteomics. Elsevier B.V.; 2013;1834(9):1789–800. doi: 10.1016/j.bbapap.2013.03.021
[8]  Milani M, Pesce A, Ouellet Y, Ascenzi P, Guertin M, Bolognesi M. Mycobacterium tuberculosis Hemoglobin N Displays a Protein Tunnel Suited for O2 Diffusion to the Heme. EMBO J. 2001 Aug 1;20(15):3902–9. pmid:11483493 doi: 10.1093/emboj/20.15.3902
[9]  Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, et al. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 2002;99(9):5902–7. pmid:11959913 doi: 10.1073/pnas.092017799
[10]  Gardner P. Nitric Oxide Dioxygenase Function and Mechanism of Flavohemoglobin, Hemoglobin, Myoglobin and their Associated Reductases. J. Inorg. Biochem. 2005;99:247–66. pmid:15598505 doi: 10.1016/j.jinorgbio.2004.10.003
[11]  Wang Y, Barbeau X, Bilimoria A, Lagüe P, Couture M, Tang JK-H. Peroxidase Activity and Involvement in the Oxidative Stress Response of Roseobacter denitrificans Truncated Hemoglobin. PLoS One. 2015;10(2). doi: 10.1371/journal.pone.0117768
[12]  Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, et al. Structure of myoglobin: A three-dimensional fourier synthesis at 2. resolution. Nature. Medical Research Council Unit for Molecular Biology, Cavendish Laboratory, Cambridge; 1960;185(4711):422–7. doi: 10.1038/185422a0
[13]  Muirhead H, Perutz MF. Structure of h?emoglobin: A three-dimensional fourier synthesis of reduced human haemoglobin at 5.5 ? resolution. Nature. Medical Research Council Laboratory of Molecular Biology, Cambridge; 1963;199(4894):633–8. doi: 10.1038/199633a0
[14]  Ignarro L. Heme-dependent Activation of Soluble Guanylate Cyclase by Nitric Oxide: Regulation of Enzyme Activity by Porphyrins and Metalloporphyrins. Semin Hematol. 1989;26(1):63–76. pmid:2564216
[15]  Hou S, Freitas TAK, Larsen R, Piatibratov M, Sivozhelezov V, Yamamoto A, et al. Globin-Coupled Sensors: a Class of Heme-Containing Sensors in Archaea and Bacteria. Proc. Natl. Acad. Sci. U. S. A. 2001;98(16):9353–8. pmid:11481493 doi: 10.1073/pnas.161185598
[16]  Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, et al. A phylogenomic profile of globins. BMC Evol. Biol. 2006 Jan;6:31. pmid:16600051 doi: 10.1186/1471-2148-6-31
[17]  Wittenberg JB, Bolognesi M, Wittenberg B a, Guertin M. Truncated Hemoglobins: a New Family of Hemoglobins Widely Distributed in Bacteria, Unicellular Eukaryotes, and Plants. J. Biol. Chem. 2002 Jan 11;277(2):871–4. pmid:11696555 doi: 10.1074/jbc.r100058200
[18]  Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, et al. A novel two-over-two α-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J. Department of Physics—INFM, Advanced Biotechnology Center—IST, University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; 2000;19(11):2424–34.
[19]  Vuletich D a, Lecomte JTJ. A Phylogenetic and Structural Analysis of Truncated Hemoglobins. J. Mol. Evol. 2006 Feb;62(2):196–210. pmid:16474979 doi: 10.1007/s00239-005-0077-4
[20]  Bustamante JP, Abbruzzetti S, Marcelli A, Gauto DF, Boechi L, Bonamore A, et al. Ligand Uptake Modulation by Internal Water Molecules and Hydrophobic Cavities in Hemoglobins. J. Phys. Chem. B. 2014; doi: 10.1021/jp410724z
[21]  Goldbeck R a, Bhaskaran S, Ortega C, Mendoza JL, Olson JS, Soman J, et al. Water and Ligand Entry in Myoglobin: Assessing the Speed and Extent of Heme Pocket Hydration After CO Photodissociation. Proc. Natl. Acad. Sci. U. S. A. 2006 Jan 31;103(5):1254–9. pmid:16432219 doi: 10.1073/pnas.0507840103
[22]  Olson J, Phillips G. Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand. J. Biol. Inorg. Chem. 1997;2:544–52. doi: 10.1007/s007750050169
[23]  Ouellet Y, Milani M, Couture M, Bolognesi M, Guertin M. Ligand interactions in the distal heme pocket of Mycobacterium tuberculosis truncated hemoglobin N: roles of TyrB10 and GlnE11 residues. Biochemistry. 2006 Jul 25;45(29):8770–81. pmid:16846220 doi: 10.1021/bi060112o
[24]  Martí M a, González Lebrero MC, Roitberg AE, Estrin D a. Bond or cage effect: how nitrophorins transport and release nitric oxide. J. Am. Chem. Soc. 2008 Feb 6;130(5):1611–8. doi: 10.1021/ja075565a. pmid:18189390
[25]  Forti F, Boechi L, Estrin DA, Marti MA. Comparing and Combining Implicit Ligand Sampling with Multiple Steered Molecular Dynamics to Study Ligand Migration Processes in Heme Proteins. J. Comput. Chem. 2011;32(10):2219–31. doi: 10.1002/jcc.21805. pmid:21541958
[26]  Arroyo Ma?ez P, Lu C, Boechi L, Martí MA, Shepherd M, Wilson JL, et al. Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter jejuni. Biochemistry. 2011;50(19):3946–56. doi: 10.1021/bi101137n. pmid:21476539
[27]  Bikiel DE, Boechi L, Capece L, Crespo A, De Biase PM, Di Lella S, et al. Modeling Heme Proteins using Atomistic Simulations. Phys. Chem. Chem. Phys. 2006;8(48):5611–28. pmid:17149482 doi: 10.1039/b611741b
[28]  Capece L, Marti M a, Crespo A, Doctorovich F, Estrin D a. Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects. J. Am. Chem. Soc. 2006 Sep 27;128(38):12455–61. pmid:16984195 doi: 10.1021/ja0620033
[29]  Nicoletti FP, Droghetti E, Howes BD, Bustamante JP, Bonamore A, Sciamanna N, et al. H-bonding Networks of the Distal Residues and Water Molecules in the Active Site of Thermobifida fusca Hemoglobin. Biochim. Biophys. Acta—Proteins Proteomics. 2013;1834:1901–9. doi: 10.1016/j.bbapap.2013.02.033
[30]  Perissinotti LL, Marti MA, Doctorovich F, Luque FJ, Estrin DA. A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion. Biochemistry. 2008;47(37):9793–802. doi: 10.1021/bi801104c. pmid:18717599
[31]  Abbruzzetti S, Bruno S, Faggiano S, Grandi E, Mozzarelli A, Viappiani C. Time-Resolved Methods in Biophysics. 2. Monitoring Haem Proteins at Work with Nanosecond Laser Flash Photolysis. Photochem. Photobiol. Sci. 2006;5(12):1109–20. pmid:17136275 doi: 10.1039/b610236k
[32]  Abbruzzetti S, Spyrakis F, Bidon-chanal A, Luque F, Viappiani C. Ligand Migration Through Hemeprotein Cavities: Insights from Laser Flash Photolysis and Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2013;15:10686–701. doi: 10.1039/c3cp51149a. pmid:23733145
[33]  Boechi L, Arrar M, Marti M, Olson J, Roitberg A, Estrin D. Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7. J. Biol. Chem. 2013; doi: 10.1074/jbc.m112.426056
[34]  Bustamante JP, Szretter M, Sued M, Marti M, Estrin D, Boechi L. A Quantitative Model for Oxygen Uptake and Release in a Family of Hemeproteins. Submited.
[35]  Ouellet YH, Daigle R, Lagüe P, Dantsker D, Milani M, Bolognesi M, et al. Ligand Binding to Truncated Hemoglobin N from Mycobacterium tuberculosis is Strongly Modulated by the Interplay Between the Distal Heme Pocket Residues and Internal Water. J. Biol. Chem. 2008 Oct 3;283(40):27270–8. doi: 10.1074/jbc.M804215200. pmid:18676995
[36]  Boron I, Bustamante JP, Davidge K, Singh S, Bowman LA, Tinajero-trejo M, et al. Ligand Uptake in Mycobacterium tuberculosis Truncated Hemoglobins is Controlled by Both Internal Tunnels and Active Site Water Molecules. F1000Research. 2015;4(22). doi: 10.12688/f1000research.5921.2
[37]  Ouellet H, Milani M, LaBarre M, Bolognesi M, Couture M, Guertin M. The Roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis Truncated Hemoglobin O in Ligand Binding and on the Heme Distal Site Architecture. Biochemistry. 2007;46:11440–50. pmid:17887774 doi: 10.1021/bi7010288
[38]  Couture M, Yeh SR, Wittenberg BA, Wittenberg JB, Ouellet Y, Rousseau DL, et al. A Cooperative Oxygen-Binding Hemoglobin from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 1999;96:11223–8. pmid:10500158 doi: 10.1073/pnas.96.20.11223
[39]  Igarashi J, Kobayashi K. A Hydrogen-Bonding Network Formed by the B10–E7–E11 Residues of a Truncated Hemoglobin from Tetrahymena pyriformis is Critical for Stability of Bound Oxygen and Nitric Oxide Detoxification. J. Biol. Inorg. Chem. 2011;16:599–609. doi: 10.1007/s00775-011-0761-3. pmid:21298303
[40]  Pesce A, Nardini M, Ascenzi P, Geuens E, Dewilde S, Moens L, et al. Thr-E11 Regulates O2 Affinity in Cerebratulus lacteus Mini-hemoglobin. J. Biol. Chem. 2004;279(32):33662–72. pmid:15161908 doi: 10.1074/jbc.m403597200
[41]  Kundu S, Blouin G, Premer S, Sarath G, Olson J, Hargrove M. Tyrosine B10 Inhibits Stabilization of Bound Carbon Monoxide and Oxygen in Soybean Leghemoglobin. Biochemistry. 2004;43:6241–52. pmid:15147208 doi: 10.1021/bi049848g
[42]  Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, et al. Determination of Ligand Pathways in Globins: Apolar Tunnels versus Polar Gates. J. Biol. Chem. 2012 Aug 1;64. doi: 10.1074/jbc.m112.392258
[43]  Scott EE, Gibson QH, Olson JS. Mapping the Pathways for O2 Entry Into and Exit from Myoglobin. J. Biol. Chem. 2001;276:5177–88. pmid:11018046 doi: 10.1074/jbc.m008282200
[44]  Kamga C, Krishnamurthy S, Shiva S. Myoglobin and Mitochondria: A Relationship Bound by Oxygen and Nitric Oxide. Nitric Oxide. 2012;26(4):251–8. doi: 10.1016/j.niox.2012.03.005. pmid:22465476
[45]  Bidon-Chanal A, Marti MA, Estrin DA, Luque FJ. Dynamical Regulation of Ligand Migration by a Gate-Opening Molecular Switch in Truncated Hemoglobin-N from Mycobacterium tuberculosis. J. Am. Chem. Soc. 2007;129:6782–8. pmid:17488073 doi: 10.1021/ja0689987
[46]  Bidon-chanal A, Mart? MA, Crespo A, Milani M, Orozco M, Bolognesi M, et al. Ligand-Induced Dynamical Regulation of NO Conversion in Mycobacterium tuberculosis Truncated Hemoglobin-N. Proteins. 2007;464(May 2006):457–64. doi: 10.1002/prot.21004
[47]  Crespo A, Martí MA, Kalko SG, Morreale A, Orozco M, Gelpi JL, et al. Theoretical Study of the Truncated Hemoglobin HbN: Exploring the Molecular Basis of the NO Detoxification Mechanism. J. Am. Chem. Soc. 2005 Mar 30;127(12):4433–44. pmid:15783226 doi: 10.1021/ja0450004
[48]  Lama A, Pawaria S, Bidon-Chanal A, Anand A, Gelpi JL, Arya S, et al. Role of pre-A Motif in Nitric Oxide Scavenging by Truncated Hemoglobin, HbN, of Mycobacterium tuberculosis. J. Biol. Chem. 2009;284(21):14457–68. doi: 10.1074/jbc.M807436200. pmid:19329431
[49]  Das T, Weber R, Dewilde S, Wittenberg J, Wittenberg B, Yamauchi K, et al. Ligand Binding in the Ferric and Ferrous States of Paramecium hemoglobin. Biochemistry. 2000;39:14330–40. pmid:11087382 doi: 10.1021/bi001681d
[50]  Ouellet H, Ranguelova K, Labarre M, Wittenberg JB, Wittenberg BA, Magliozzo RS, et al. Reaction of Mycobacterium tuberculosis Truncated Hemoglobin O with Hydrogen Peroxide: Evidence for Peroxidatic Activity and Formation of Protein-based Radicals. J. Biol. Chem. 2007;282(10):7491–503. pmid:17218317 doi: 10.1074/jbc.m609155200
[51]  Torge R, Comandini A, Catacchio B, Bonamore A, Botta B, Boffi A. Peroxidase-Like Activity of Thermobifida fusca Hemoglobin: The Oxidation of Dibenzylbutanolide. J. Mol. Catal. B Enzym. 2009 Dec;61(3–4):303–8. doi: 10.1016/j.molcatb.2009.08.010
[52]  Freitas TAK, Hou S, Dioum EM, Saito J a, Newhouse J, Gonzalez G, et al. Ancestral hemoglobins in Archaea. Proc. Natl. Acad. Sci. U. S. A. 2004 Apr 27;101(17):6675–80. pmid:15096613 doi: 10.1073/pnas.0308657101
[53]  Bateman A, Birney E, Durbin R, Eddy S, Howe K, Sonnhammer E. The Pfam Protein Families Database. Nucleic Acids Res. 2000;28(1):263–6. pmid:10592242 doi: 10.1093/nar/28.1.263
[54]  Bernstein F, Koetzle T, Williams G, Meyer E, Brice M, Rodgers J, et al. The Protein Data Bank: a Computer-Based Archival File for Macromolecular Structures. J. Mol. Biol. 1977;112(3):535–42. pmid:875032 doi: 10.1016/s0022-2836(77)80200-3
[55]  Eddy S. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011;7(10). doi: 10.1371/journal.pcbi.1002195
[56]  Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a Web Server for Clustering and Comparing Biological Sequences. Bioinformatics. 2010;26(5):680–2. doi: 10.1093/bioinformatics/btq003. pmid:20053844
[57]  Pei J, Kim B- H, Grishin NV. PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States; 2008;36(7):2295–300.
[58]  Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. doi: 10.1093/bioinformatics/btp033. pmid:19151095
[59]  Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010 Jan;10:210. doi: 10.1186/1471-2148-10-210. pmid:20626897
[60]  Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. Méthodes et Algorithmes Pour la Bioinformatique, LIRMM, Université de Montpellier, 161 rue Ada, 34392 Montpellier Cedex 5, France; 2010;59(3):307–21. doi: 10.1093/sysbio/syq010
[61]  Abascal F, Zardoya R, Posada D. ProtTest: Selection of Best-fit Models of Protein Evolution. Bioinformatics. 2005;21(9):2104–5. pmid:15647292 doi: 10.1093/bioinformatics/bti263
[62]  Letunic I, Bork P. Interactive Tree Of Life v2: Online Annotation and Display of Phylogenetic Trees made Easy. Nucleic Acids Res. 2011; doi: 10.1093/nar/gkr201
[63]  Mazin P, Gelfand M, Mironov A, Rakhmaninova A, Rubinov A, Russell R, et al. An Automated Stochastic Approach to the Identification of the Protein Specificity Determinants and Functional Subfamilies. Algorithms Mol. Biol. 2010;5(29). doi: 10.1186/1748-7188-5-29
[64]  Simonetti F, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C. MISTIC: Mutual Information Server to Infer Coevolution. Nucleic Acids Res. 2013; doi: 10.1093/nar/gkt427
[65]  Milani M, Savard P-Y, Ouellet H, Ascenzi P, Guertin M, Bolognesi M. A TyrCD1/TrpG8 hydrogen bond network and a TyrB10—TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O. Proc. Natl. Acad. Sci. U. S. A. Department of Physics, Natl. Institute of Physics of Matter, University of Genoa, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; 2003;100(10):5766–71. doi: 10.1073/pnas.1037676100
[66]  Nardini M, Pesce A, Labarre M, Richard C, Bolli A, Ascenzi P, et al. Structural Determinants in the Group III Truncated Hemoglobin from Campylobacter jejuni. J. Biol. Chem. Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, I-20131 Milano, Italy; 2006;281(49):37803–12. doi: 10.1074/jbc.m607254200
[67]  Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, et al. Structural Flexibility of the Heme Cavity in the Cold-Adapted Truncated Hemoglobin from the Antarctic Marine Bacterium Pseudoalteromas haloplanktis TAC125. Fed. Eur. Biochem. Soc. J. 2015;282(15):2948–65. doi: 10.1111/febs.13335
[68]  Pesce A, Nardini M, LaBarre M, Richard C, Wittenberg JB, Wittenberg BA, et al. Structural Characterization of a Group II 2/2 Hemoglobin from the Plant Pathogen Agrobacterium tumefaciens. Biochim. Biophys. Acta—Proteins Proteomics. 2011;1814(6):810–6. doi: 10.1016/j.bbapap.2010.11.001
[69]  Wang J, Cieplak P, Kollman PA. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? J. Comput. Chem. 2000;21(12):1049–74. doi: 10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.3.co;2-6
[70]  Marti MA, Crespo A, Capece L, Boechi L, Bikiel DE, Scherlis DA, et al. Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation. J. Inorg. Biochem. 2006;100(4):761–70. pmid:16442625 doi: 10.1016/j.jinorgbio.2005.12.009
[71]  Capece L, Lewis-ballester A, Marti MA, Estrin DA, Yeh S. Molecular Basis for the Substrate Stereoselectivity in Tryptophan Dioxygenase. Biochemistry. 2011;50:10910–8. doi: 10.1021/bi201439m. pmid:22082147
[72]  Forti F, Boechi L, Bikiel D, Martí MA, Nardini M, Bolognesi M, et al. Ligand Migration in Methanosarcina acetivorans Protoglobin: Effects of Ligand Binding and Dimeric Assembly. J. Phys. Chem. B. 2011;115(46):13771–80. doi: 10.1021/jp208562b. pmid:21985496
[73]  Giordano D, Boechi L, Samuni U, Vergara A, Mart? MA, Estrin A, et al. The Hemoglobins of the Sub-Antarctic Fish Cottoperca gobio, a Phyletically Basal Species—Oxygen-Binding Equilibria, Kinetics and Molecular Dynamics. FEBS J. 2009;276:2266–77. doi: 10.1111/j.1742-4658.2009.06954.x. pmid:19292863
[74]  Nicoletti FP, Droghetti E, Boechi L, Bonamore A, Sciamanna N, Estrin D a, et al. Fluoride as a Probe for H-bonding Interactions in the Active Site of Heme Proteins: the Case of Thermobifida fusca Hemoglobin. J. Am. Chem. Soc. 2011 Dec 28;133(51):20970–80. doi: 10.1021/ja209312k. pmid:22091531
[75]  Nicoletti FP, Bustamante JP, Droghetti E, Howes BD, Fittipaldi M, Bonamore A, et al. Interplay of the H-bond Donor-Acceptor Role of the Distal Residues in the Hydroxyl Ligand Stabilization of Thermobifida fusca Truncated Hemoglobin. Biochemistry. 2014;53(51):8021–30. doi: 10.1021/bi501132a. pmid:25437272
[76]  Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, et al. AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules. Comput. Phys. Commun. 1995;91(1–3):1–41. doi: 10.1016/0010-4655(95)00041-d
[77]  Cohen J, Olsen KW, Schulten K. Finding Gas Migration Pathways in Proteins using Implicit Ligand Sampling. Methods Enzymol. 2008 Jan;437(07):439–57. doi: 10.1016/s0076-6879(07)37022-5
[78]  Marcelli A, Abbruzzetti S, Bustamante JP, Feis A, Bonamore A, Boffi A, et al. Following Ligand Migration Pathways from Picoseconds to Milliseconds in Type II Truncated Hemoglobin from Thermobifida fusca. PLoS One. 2012 Jan;7(7):e39884. doi: 10.1371/journal.pone.0039884. pmid:22792194
[79]  Crespo A, Scherlis DA, Martí MA, Ordejón P, Roitberg AE, Estrin DA. A DFT-based QM-MM Approach Designed for the Treatment of large Molecular Systems: Application to Chorismate Mutase. J. Phys. Chem. B. 2003;107(49):13728–36. doi: 10.1021/jp036236h
[80]  Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77(18):3865–8. pmid:10062328 doi: 10.1103/physrevlett.77.3865
[81]  Franzen S. Spin-Dependent Mechanism for Diatomic Ligand Binding to Heme. Proc. Natl. Acad. Sci. U. S. A. 2002;99(26):16754–9. pmid:12477933 doi: 10.1073/pnas.252590999
[82]  Hoy J, Kundu S, Trent J III, Ramaswamy S, Hargrove M. The Crystal Structure of Synechocystis Hemoglobin with a Covalent Heme Linkage. J. Biol. Chem. 2004;276(16):16535–42. doi: 10.1074/jbc.m313707200
[83]  Halder P, Trent III J, Hargrove M. Influence of the Protein Matrix on Intramolecular Histidine Ligatin in Ferric and Ferrous Hexacoordinate Hemoglobins. Proteins Struct. Funct. Bioformatics. 2007;66:172–82. doi: 10.1002/prot.21210
[84]  Couture M, Das T, Savard P-Y, Ouellet Y, Wittenberg J, Wittenberg B, et al. Structural Investigations of the Hemoglobin of the Cyanobacterium Synechocystis PCC6803 Reveal a Unique Distal Heme Pocket. Eur. J. Biochem. 2000;267:4770–80. pmid:10903511 doi: 10.1046/j.1432-1327.2000.01531.x
[85]  Scott E, Falzone C, Vuletich D, Zhao J, Bryant D, Lecomte J. Truncated hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein. Biochemistry. 2002;41(22):6902–10. pmid:12033922 doi: 10.1021/bi025609m
[86]  Lecomte J, Vuletich D, Vu B, Kuriakose S, Scott N, Falzone C. Structural properties of cyanobacterial hemoglobins: the unusual heme-protein cross-link of Synechocystis sp. PCC 6803 Hb and Synechococcus sp. PC 7002 Hb. Micron. 2004;35(1–2):71–2. doi: 10.1016/j.micron.2003.10.020
[87]  Johnson E, Rice S, Preimesberger M, Nye D, Gilevicius L, Wenke B, et al. Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligand. Biochemistry. 2014;53(28):4573–89. doi: 10.1021/bi5005206. pmid:24964018
[88]  Laverman L, Hoshino M, Ford P. A Dissociative Mechanism for Reactions of Nitric Oxide with Water Soluble Iron(III) Porphyrins. J. Am. Chem. Soc. 1997;119:12663–4. doi: 10.1021/ja972448e
[89]  Laverman L, Ford P. Mechanistic Studies of Nitric Oxide Reactions with Water Soluble Iron(II), Cobalt(II), and Iron(III) Porphyrin Complexes in Aqueous Solutions: Implications for Biological Activity. J. Am. Chem. Soc. 2001;123:11614–22. pmid:11716716 doi: 10.1021/ja0113910
[90]  Scherlis D, Cococcioni M, Sit P, Marzari N. Simulation of Heme Using DFT + U: A Step toward Accurate Spin-State Energetics. J. Phys. Chem. B. 2007;111:7384–91. pmid:17547444 doi: 10.1021/jp070549l

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133