全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Measuring Integrated Information from the Decoding Perspective

DOI: 10.1371/journal.pcbi.1004654

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accumulating evidence indicates that the capacity to integrate information in the brain is a prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness provides a mathematical approach to quantifying the information integrated in a system, called integrated information, Φ. Integrated information is defined theoretically as the amount of information a system generates as a whole, above and beyond the amount of information its parts independently generate. IIT predicts that the amount of integrated information in the brain should reflect levels of consciousness. Empirical evaluation of this theory requires computing integrated information from neural data acquired from experiments, although difficulties with using the original measure Φ precludes such computations. Although some practical measures have been previously proposed, we found that these measures fail to satisfy the theoretical requirements as a measure of integrated information. Measures of integrated information should satisfy the lower and upper bounds as follows: The lower bound of integrated information should be 0 and is equal to 0 when the system does not generate information (no information) or when the system comprises independent parts (no integration). The upper bound of integrated information is the amount of information generated by the whole system. Here we derive the novel practical measure Φ* by introducing a concept of mismatched decoding developed from information theory. We show that Φ* is properly bounded from below and above, as required, as a measure of integrated information. We derive the analytical expression of Φ* under the Gaussian assumption, which makes it readily applicable to experimental data. Our novel measure Φ* can generally be used as a measure of integrated information in research on consciousness, and also as a tool for network analysis on diverse areas of biology.

References

[1]  Chalmers DJ. Facing up to the problem of consciousness. J Conscious Stud. 1995; 2: 200–219.
[2]  Tononi G. An information integration theory of consciousness. BMC Neurosci 2004; 5: 42. doi: 10.1186/1471-2202-5-42. pmid:15522121
[3]  Tononi G. Consciousness as integrated information: a provisional manifesto. Biol Bull. 2008; 215: 216–242. doi: 10.2307/25470707. pmid:19098144
[4]  Tononi G. Information integration: its relevance to brain function and consciousness. Arch Ital Biol. 2010; 148: 299–322. pmid:21175016
[5]  Tononi G. Integrated information theory of consciousness: an updated account. Arch Ital Biol. 2012; 150: 56–90. pmid:23165867
[6]  Balduzzi D, Tononi G. Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Comput Biol 2008; 4: e1000091. doi: 10.1371/journal.pcbi.1000091. pmid:18551165
[7]  Balduzzi D, Tononi G. Qualia: the geometry of integrated information. PLoS Comput Biol. 2009; 5: e1000462. doi: 10.1371/journal.pcbi.1000462. pmid:19680424
[8]  Oizumi M, Albantakis L, Tononi G. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0. PLoS Comp Biol. 2014; 10: e1003588. doi: 10.1371/journal.pcbi.1003588.
[9]  Tononi G, Koch C. Consciousness: here, there and everywhere? Phil Trans R Soc B. 2015; 19: 370. doi: 10.1098/rstb.2014.0198
[10]  Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005; 309: 2228–2232. doi: 10.1126/science.1117256. pmid:16195466
[11]  Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, Peterson MJ, Tononi G. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA. 2007; 104: 8496–8501. doi: 10.1073/pnas.0702495104. pmid:17483481
[12]  Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, Tononi G, Pearce RA. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA. 2010; 107: 2681–2686. doi: 10.1073/pnas.0913008107. pmid:20133802
[13]  Rosanova M, Gosseries O, Casarotto S, Boly M, Casali AG, Bruno MA, Mariotti M, Boveroux P, Tononi G, Laureys S, Massimini M. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain. 2012; 135. 1308–1320. doi: 10.1093/brain/awr340. pmid:22226806
[14]  Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013; 5: 198ra105. pmid:23946194 doi: 10.1126/scitranslmed.3006294
[15]  Barrett AB, Seth AK. Practical measures of integrated information for time-series data. PLoS Comput Biol 2011; 7. e1001052. doi: 10.1371/journal.pcbi.1001052. pmid:21283779
[16]  Cover TM, Thomas JA. Elements of information theory. New York: Wiley; 1991.
[17]  Merhav N, Kaplan G, Lapidoth A, Shamai Shitz S. On information rates for mismatched decoders. IEEE Trans Inform Theory. 1994; 40: 1953–1967. doi: 10.1109/18.340469.
[18]  Latham PE, Nirenberg S. Synergy, redundancy, and independence in population codes, revisited. J Neurosci. 2005; 25: 5195–5206. doi: 10.1523/JNEUROSCI.5319-04.2005. pmid:15917459
[19]  Oizumi M, Ishii T, Ishibashi K, Hosoya T, Okada M. Mismatched decoding in the brain. J Neurosci. 2010; 30: 4815–4826. doi: 10.1523/JNEUROSCI.4360-09.2010. pmid:20357132
[20]  Oizumi M, Okada M, Amari S. Information loss associated with imperfect observation and mismatched decoding. Front Comput Neurosci. 2011; 5: 9. doi: 10.3389/fncom.2011.00009. pmid:21629857
[21]  Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. Spikes: Exploring the neural code. Cambridge, MA: MIT Press; 1997.
[22]  Dayan P, Abbott LF. Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press; 2001.
[23]  Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci. 2006; 7: 358–366. doi: 10.1038/nrn1888. pmid:16760916
[24]  Quian Quiroga R, Panzeri S. Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci. 2009; 10: 173–185. doi: 10.1038/nrn2578. pmid:19229240
[25]  Ay N. Information geometry on complexity and stochastic interaction. 2001. MPI MIS Preprint 95.
[26]  Ay N. Information geometry on complexity and stochastic interaction. Entropy. 2015; 17: 2432–2458. doi: 10.3390/e17042432.
[27]  Lee U, Mashour GA, Kim S, Noh GJ, Choi BM. Propofol induction reduces the capacity for neural information integration: Implications for the mechanism of consciousness and general anesthesia. Conscious Cogn. 2009; 18: 56–64. doi: 10.1016/j.concog.2008.10.005. pmid:19054696
[28]  Chang JY, et al. Multivariate autoregressive models with exogenous inputs for intracerebral responses to direct electrical stimulation of the human brain. Front Hum Neurosci. 2012; 6: 317. doi: 10.3389/fnhum.2012.00317. pmid:23226122
[29]  Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008; 322: 876–880. doi: 10.1126/science.1149213. pmid:18988836
[30]  Boly M. Measuring the fading consciousness in the human brain. Curr Opin Neurol. 2011; 24: 394–400. pmid:21577107 doi: 10.1097/wco.0b013e328347da94
[31]  Sanders RD, Tononi G, Laureys S, Sleigh J. Unresponsiveness ≠ unconsciousness. Anesthesiology. 2012; 116: 946–959. doi: 10.1097/ALN.0b013e318249d0a7. pmid:22314293
[32]  Boly M, Sasai S, Gosseries O, Oizumi M, Casali A, Massimini M, et al. Stimulus set meaningfulness and neurophysiological differentiation: A functional magnetic resonance imaging study. PLoS ONE. 2015; 10: e0125337. doi: 10.1371/journal.pone.0125337. pmid:25970444
[33]  Ding M, Chen Y, Bressler SL. Granger causality: Basic theory and application to neuroscience. In: Schelter S, Winterhalder N, Timmer J, editors. Handbook of time series analysis. Wienheim: Wiley; 2006. pp. 438–460.
[34]  Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy–a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011; 30: 45–67. doi: 10.1007/s10827-010-0262-3. pmid:20706781
[35]  Amari S, Nagaoka H. Methods of information geometry. AMS and Oxford University Press; 2000.
[36]  Oizumi M, Tsuchiya N, Amari S. A unified framework for information integration based on information geometry. 2015. Preprint.
[37]  Seth AK, Barrett AB, Barnett L. Causal density and integrated information as measures of conscious level. Philos Transact A Math Phys Eng Sci. 2011; 369: 3748–3767. doi: 10.1098/rsta.2011.0079.
[38]  Yanagawa T, Chao ZC, Hasegawa N, Fujii N. Large-scale information flow in conscious and unconscious states: an ECoG study in monkeys. PLoS One. 2013; 8: e80845. doi: 10.1371/journal.pone.0080845. pmid:24260491
[39]  Edlund J, Chaumont N, Hintze A, Koch C, Tononi G, Adami C. Integrated information increases with fitness in the evolution of animats. PLoS Comput Biol. 2011; 7: e1002236. doi: 10.1371/journal.pcbi.1002236. pmid:22028639

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133