全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5’-Phosphate Production in E. coli

DOI: 10.1371/journal.pcbi.1004705

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.

References

[1]  Koshland DE. The Key-Lock Theory and the Induced Fit Theory. Angew Chem Int Edit. 1994;33(23–24):2375–8. pmid:ISI:A1995QC60700003. doi: 10.1002/anie.199423751
[2]  Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324(5924):203–7. Epub 2009/04/11. doi: 10.1126/science.1169375324/5924/203 [pii]. pmid:19359577.
[3]  Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, et al. Network context and selection in the evolution to enzyme specificity. Science. 2012;337(6098):1101–4. Epub 2012/09/01. doi: 10.1126/science.1216861337/6098/1101 [pii]. pmid:22936779; PubMed Central PMCID: PMC3536066.
[4]  Wang Y, Tao F, Xu P. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J Biol Chem. 2014;289(9):6080–90. Epub 2014/01/17. doi: 10.1074/jbc.M113.525535 [pii]. pmid:24429283; PubMed Central PMCID: PMC3937674.
[5]  James LC, Roversi P, Tawfik DS. Antibody multispecificity mediated by conformational diversity. Science. 2003;299(5611):1362–7. Epub 2003/03/01. doi: 10.1126/science.1079731299/5611/1362 [pii]. pmid:12610298.
[6]  Aharoni A, Gaidukov L, Khersonsky O, Mc QGS, Roodveldt C, Tawfik DS. The 'evolvability' of promiscuous protein functions. Nat Genet. 2005;37(1):73–6. Epub 2004/11/30. ng1482 [pii] doi: 10.1038/ng1482 pmid:15568024.
[7]  Soo VW, Hanson-Manful P, Patrick WM. Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 2011;108(4):1484–9. Epub 2010/12/22. 1012108108 [pii] doi: 10.1073/pnas.1012108108 pmid:21173244; PubMed Central PMCID: PMC3029738.
[8]  Kim J, Kershner JP, Novikov Y, Shoemaker RK, Copley SD. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis. Mol Syst Biol. 2010;6:436. Epub 2010/12/02. msb201088 [pii] doi: 10.1038/msb.2010.88 pmid:21119630; PubMed Central PMCID: PMC3010111.
[9]  Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, et al. PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res. 2010;38(Web Server issue):W138–43. Epub 2010/05/04. doi: 10.1093/nar/gkq318gkq318 [pii]. pmid:20435670; PubMed Central PMCID: PMC2896155.
[10]  Chatsurachai S, Furusawa C, Shimizu H. An in silico platform for the design of heterologous pathways in nonnative metabolite production. BMC Bioinformatics. 2012;13:93. Epub 2012/05/15. doi: 10.1186/1471-2105-13-931471-2105-13-93 [pii]. pmid:22578364; PubMed Central PMCID: PMC3506926.
[11]  Carbonell P, Planson AG, Fichera D, Faulon JL. A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol. 2011;5:122. Epub 2011/08/09. doi: 10.1186/1752-0509-5-1221752-0509-5-122 [pii]. pmid:21819595; PubMed Central PMCID: PMC3163555.
[12]  Shin JH, Kim HU, Kim DI, Lee SY. Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv. 2013;31(6):925–35. Epub 2013/01/03. doi: 10.1016/j.biotechadv.2012.12.008S0734-9750(12)00215-7 [pii]. pmid:23280013.
[13]  Steinkellner G, Gruber CC, Pavkov-Keller T, Binter A, Steiner K, Winkler C, et al. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nat Commun. 2014;5:4150. doi: 10.1038/ncomms5150 pmid:24954722; PubMed Central PMCID: PMC4083419.
[14]  Chakraborty S, Rao BJ. A measure of the promiscuity of proteins and characteristics of residues in the vicinity of the catalytic site that regulate promiscuity. PLoS One. 2012;7(2):e32011. doi: 10.1371/journal.pone.0032011 pmid:22359655; PubMed Central PMCID: PMC3281107.
[15]  Carbonell P, Faulon JL. Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics. 2010;26(16):2012–9. Epub 2010/06/17. btq317 [pii] doi: 10.1093/bioinformatics/btq317 pmid:20551137.
[16]  Notebaart RA, Szappanos B, Kintses B, Pal F, Gyorkei A, Bogos B, et al. Network-level architecture and the evolutionary potential of underground metabolism. Proc Natl Acad Sci U S A. 2014. Epub 2014/07/30. 201406102 [pii]1406102111 [pii] doi: 10.1073/pnas.1406102111 pmid:25071190.
[17]  Guzman GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, et al. Model-driven discovery of underground metabolic functions in Escherichia coli. Proc Natl Acad Sci U S A. 2015;112(3):929–34. doi: 10.1073/pnas.1414218112 pmid:25564669; PubMed Central PMCID: PMC4311852.
[18]  Berg CM, Wang MD, Vartak NB, Liu L. Acquisition of new metabolic capabilities: multicopy suppression by cloned transaminase genes in Escherichia coli K-12. Gene. 1988;65(2):195–202. Epub 1988/05/30. pmid:3044925. doi: 10.1016/0378-1119(88)90456-8
[19]  Patrick WM, Quandt EM, Swartzlander DB, Matsumura I. Multicopy suppression underpins metabolic evolvability. Mol Biol Evol. 2007;24(12):2716–22. Epub 2007/09/22. msm204 [pii] doi: 10.1093/molbev/msm204 pmid:17884825; PubMed Central PMCID: PMC2678898.
[20]  Henry CS, Overbeek R, Xia F, Best AA, Glass E, Gilbert J, et al. Connecting genotype to phenotype in the era of high-throughput sequencing. Biochim Biophys Acta. 2011. Epub 2011/03/23. S0304-4165(11)00059-6 [pii] doi: 10.1016/j.bbagen.2011.03.010 pmid:21421023.
[21]  Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28(9):977–82. Epub 2010/08/31. nbt.1672 [pii] doi: 10.1038/nbt.1672 pmid:20802497.
[22]  Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007;3:121. Epub 2007/06/28. msb4100155 [pii] doi: 10.1038/msb4100155 pmid:17593909; PubMed Central PMCID: PMC1911197.
[23]  Black PN, Zhang Q, Weimar JD, DiRusso CC. Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem. 1997;272(8):4896–903. Epub 1997/02/21. pmid:9030548. doi: 10.1074/jbc.272.8.4896
[24]  Morett E, Saab-Rincon G, Olvera L, Olvera M, Flores H, Grande R. Sensitive genome-wide screen for low secondary enzymatic activities: the YjbQ family shows thiamin phosphate synthase activity. J Mol Biol. 2008;376(3):839–53. Epub 2008/01/08. S0022-2836(07)01622-1 [pii] doi: 10.1016/j.jmb.2007.12.017 pmid:18178222.
[25]  Bauer JA, Bennett EM, Begley TP, Ealick SE. Three-dimensional structure of YaaE from Bacillus subtilis, a glutaminase implicated in pyridoxal-5 '-phosphate biosynthesis. Journal of Biological Chemistry. 2004;279(4):2704–11. doi: 10.1074/jbc.M310311200 pmid:ISI:000188211300047.
[26]  Belitsky BR. Physical and enzymological interaction of Bacillus subtilis proteins required for de novo pyridoxal 5 '-phosphate biosynthesis. Journal of Bacteriology. 2004;186(4):1191–6. doi: 10.1128/Jb.186.4.1191–1196.2004 pmid:ISI:000189117800033.
[27]  Sakai A, Kita M, Katsuragi T, Ogasawara N, Tani Y. yaaD and yaaE are involved in vitamin B-6 biosynthesis in Bacillus subtilis. Journal of Bioscience and Bioengineering. 2002;93(3):309–12. doi: 10.1263/Jbb.93.309 pmid:ISI:000175490400008.
[28]  Baker D, Sali A. Protein structure prediction and structural genomics. Science. 2001;294(5540):93–6. Epub 2001/10/06. doi: 10.1126/science.1065659294/5540/93 [pii]. pmid:11588250.
[29]  Settembre EC, Dorrestein PC, Zhai H, Chatterjee A, McLafferty FW, Begley TP, et al. Thiamin biosynthesis in Bacillus subtilis: structure of the thiazole synthase/sulfur carrier protein complex. Biochemistry. 2004;43(37):11647–57. Epub 2004/09/15. doi: 10.1021/bi0488911 pmid:15362849.
[30]  Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010;38(Web Server issue):W529-33. Epub 2010/05/19. doi: 10.1093/nar/gkq399gkq399 [pii]. pmid:20478830; PubMed Central PMCID: PMC2896094.
[31]  Bergthorsson U, Andersson DI, Roth JR. Ohno's dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci U S A. 2007;104(43):17004–9. Epub 2007/10/19. 0707158104 [pii] doi: 10.1073/pnas.0707158104 pmid:17942681; PubMed Central PMCID: PMC2040452.
[32]  Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol. 2011;7:535. doi: 10.1038/msb.2011.65 pmid:21988831; PubMed Central PMCID: PMC3261703.
[33]  Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537:39–64. Epub 2009/04/21. doi: 10.1007/978-1-59745-251-9_3 pmid:19378139.
[34]  Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50. Epub 2009/04/21. doi: 10.1093/molbev/msp077 [pii]. pmid:19377059; PubMed Central PMCID: PMC2693737.
[35]  Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8. Epub 2010/03/10. nbt.1614 [pii] doi: 10.1038/nbt.1614 pmid:20212490.
[36]  Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006 0008. Epub 2006/06/02. msb4100050 [pii] doi: 10.1038/msb4100050 pmid:16738554; PubMed Central PMCID: PMC1681482.
[37]  Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 2005;12(5):291–9. Epub 2006/06/14. dsi012 [pii] doi: 10.1093/dnares/dsi012 pmid:16769691.
[38]  Strohmeier M, Raschle T, Mazurkiewicz J, Rippe K, Sinning I, Fitzpatrick TB, et al. Structure of a bacterial pyridoxal 5'-phosphate synthase complex. Proc Natl Acad Sci U S A. 2006;103(51):19284–9. Epub 2006/12/13. 0604950103 [pii] doi: 10.1073/pnas.0604950103 pmid:17159152; PubMed Central PMCID: PMC1748218.
[39]  Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014. Epub 2014/05/02. gku340 [pii] doi: 10.1093/nar/gku340 pmid:24782522.
[40]  Crystal structure of TTHA0676 from Thermus thermophilus HB8. 10.2210/pdb2htm/pdb [Internet].
[41]  The PyMOL Molecular Graphics System, Version 1.5.0.4 Schr?dinger, LLC.
[42]  Wagner A, Zarecki R, Reshef L, Gochev C, Sorek R, Gophna U, et al. Computational evaluation of cellular metabolic costs successfully predicts genes whose expression is deleterious. Proc Natl Acad Sci U S A. 2013;110(47):19166–71. Epub 2013/11/08. doi: 10.1073/pnas.1312361110 [pii]. pmid:24198337; PubMed Central PMCID: PMC3839766.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133