全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spontaneous Decoding of the Timing and Content of Human Object Perception from Cortical Surface Recordings Reveals Complementary Information in the Event-Related Potential and Broadband Spectral Change

DOI: 10.1371/journal.pcbi.1004660

Full-Text   Cite this paper   Add to My Lib

Abstract:

The link between object perception and neural activity in visual cortical areas is a problem of fundamental importance in neuroscience. Here we show that electrical potentials from the ventral temporal cortical surface in humans contain sufficient information for spontaneous and near-instantaneous identification of a subject’s perceptual state. Electrocorticographic (ECoG) arrays were placed on the subtemporal cortical surface of seven epilepsy patients. Grayscale images of faces and houses were displayed rapidly in random sequence. We developed a template projection approach to decode the continuous ECoG data stream spontaneously, predicting the occurrence, timing and type of visual stimulus. In this setting, we evaluated the independent and joint use of two well-studied features of brain signals, broadband changes in the frequency power spectrum of the potential and deflections in the raw potential trace (event-related potential; ERP). Our ability to predict both the timing of stimulus onset and the type of image was best when we used a combination of both the broadband response and ERP, suggesting that they capture different and complementary aspects of the subject’s perceptual state. Specifically, we were able to predict the timing and type of 96% of all stimuli, with less than 5% false positive rate and a ~20ms error in timing.

References

[1]  Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of neuroscience: the official journal of the Society for Neuroscience 17: 4302–4311.
[2]  Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392: 598–601. pmid:9560155 doi: 10.1038/33402
[3]  Aguirre GK, Zarahn E, D'Esposito M (1998) An area within human ventral cortex sensitive to "building" stimuli: evidence and implications. Neuron 21: 373–383. pmid:9728918 doi: 10.1016/s0896-6273(00)80546-2
[4]  Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. Journal of neurophysiology 74: 1192–1199. pmid:7500143
[5]  Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3: 946–953. pmid:10966627
[6]  Kiani R, Esteky H, Mirpour K, Tanaka K (2007) Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol 97: 4296–4309. pmid:17428910 doi: 10.1152/jn.00024.2007
[7]  Ghuman AS, Brunet NM, Li Y, Konecky RO, Pyles JA, et al. (2014) Dynamic encoding of face information in the human fusiform gyrus. Nat Commun 5: 5672. doi: 10.1038/ncomms6672. pmid:25482825
[8]  Privman E, Fisch L, Neufeld MY, Kramer U, Kipervasser S, et al. (2011) Antagonistic relationship between gamma power and visual evoked potentials revealed in human visual cortex. Cereb Cortex 21: 616–624. doi: 10.1093/cercor/bhq128. pmid:20624838
[9]  Vidal JR, Ossandon T, Jerbi K, Dalal SS, Minotti L, et al. (2010) Category-Specific Visual Responses: An Intracranial Study Comparing Gamma, Beta, Alpha, and ERP Response Selectivity. Front Hum Neurosci 4: 195. doi: 10.3389/fnhum.2010.00195. pmid:21267419
[10]  Kadipasaoglu CM, Baboyan VG, Conner CR, Chen G, Saad ZS, et al. (2014) Surface-based mixed effects multilevel analysis of grouped human electrocorticography. Neuroimage 101: 215–224. doi: 10.1016/j.neuroimage.2014.07.006. pmid:25019677
[11]  Miller KJ, Zanos S, Fetz EE, den Nijs M, Ojemann JG (2009) Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans. Journal of Neuroscience 29: 3132. doi: 10.1523/JNEUROSCI.5506-08.2009. pmid:19279250
[12]  Miller KJ, Honey CJ, Hermes D, Rao RP, denNijs M, et al. (2014) Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 85 Pt 2: 711–720. doi: 10.1016/j.neuroimage.2013.08.070
[13]  Miller KJ, Hermes D, Witthoft N, Rao RP, Ojemann JG (2015) The physiology of perception in human temporal lobe is specialized for contextual novelty. J Neurophysiol 114: 256–263. doi: 10.1152/jn.00131.2015. pmid:25972581
[14]  Allison T, Ginter H, McCarthy G, Nobre AC, Puce A, et al. (1994) Face recognition in human extrastriate cortex. Journal of neurophysiology 71: 821–825. pmid:8176446
[15]  Allison T, McCarthy G, Nobre A, Puce A, Belger A (1994) Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral cortex 4: 544–554. pmid:7833655 doi: 10.1093/cercor/4.5.544
[16]  Huettel SA, McKeown MJ, Song AW, Hart S, Spencer DD, et al. (2004) Linking hemodynamic and electrophysiological measures of brain activity: evidence from functional MRI and intracranial field potentials. Cerebral cortex 14: 165–173. pmid:14704213 doi: 10.1093/cercor/bhg115
[17]  Engell AD, Huettel S, McCarthy G (2012) The fMRI BOLD signal tracks electrophysiological spectral perturbations, not event-related potentials. NeuroImage 59: 2600–2606. doi: 10.1016/j.neuroimage.2011.08.079. pmid:21925278
[18]  Jacques C, Witthoft N, Weiner KS, Foster BL, Rangarajan V, et al. (2015) Corresponding ECoG and fMRI category-selective signals in Human ventral temporal cortex. Neuropsychologia. doi: 10.1016/j.neuropsychologia.2015.07.024
[19]  Engell AD, McCarthy G (2011) The Relationship of Gamma Oscillations and Face-Specific ERPs Recorded Subdurally from Occipitotemporal Cortex. Cerebral cortex 21: 1213–1221. doi: 10.1093/cercor/bhq206. pmid:20961973
[20]  Simanova I, van Gerven M, Oostenveld R, Hagoort P (2010) Identifying object categories from event-related EEG: toward decoding of conceptual representations. PloS one 5: e14465. doi: 10.1371/journal.pone.0014465. pmid:21209937
[21]  van de Nieuwenhuijzen ME, Backus AR, Bahramisharif A, Doeller CF, Jensen O, et al. (2013) MEG-based decoding of the spatiotemporal dynamics of visual category perception. NeuroImage 83: 1063–1073. doi: 10.1016/j.neuroimage.2013.07.075. pmid:23927900
[22]  Cichy RM, Pantazis D, Oliva A (2014) Resolving human object recognition in space and time. Nat Neurosci 17: 455–462. doi: 10.1038/nn.3635. pmid:24464044
[23]  Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. Journal of Neuroscience 29: 13613. doi: 10.1523/JNEUROSCI.2041-09.2009. pmid:19864573
[24]  Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5: e1000609. doi: 10.1371/journal.pcbi.1000609. pmid:20019800
[25]  Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26: 839–851. pmid:15955494 doi: 10.1016/j.neuroimage.2005.02.018
[26]  Wells WM 3rd, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1: 35–51. pmid:9873920 doi: 10.1016/s1361-8415(01)80004-9
[27]  Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF (2010) Automated electrocorticographic electrode localization on individually rendered brain surfaces. Journal of neuroscience methods 185: 293–298. doi: 10.1016/j.jneumeth.2009.10.005. pmid:19836416
[28]  Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179–194. pmid:9931268 doi: 10.1006/nimg.1998.0395
[29]  Miller KJ, Hebb AO, Hermes D, Nijs MD, Ojemann JG, et al. Brain surface electrode co-registration using MRI and x-ray; 2010. IEEE. pp. 6015–6018.
[30]  Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51: 1034–1043. pmid:15188875 doi: 10.1109/tbme.2004.827072
[31]  Porat B (1997) A course in digital signal processing: Wiley.
[32]  Miller KJ, Hermes D, Honey CJ, Hebb AO, Ramsey NF, et al. (2012) Human motor cortical activity is selectively phase-entrained on underlying rhythms. PLoS computational biology 8: e1002655. doi: 10.1371/journal.pcbi.1002655. pmid:22969416
[33]  Miller KJ, Hermes D, Honey CJ, Sharma M, Rao RP, et al. (2010) Dynamic modulation of local population activity by rhythm phase in human occipital cortex during a visual search task. Frontiers in human neuroscience 4: 197. doi: 10.3389/fnhum.2010.00197. pmid:21119778
[34]  Hermes D, Miller KJ, Wandell BA, Winawer J (2014) Stimulus Dependence of Gamma Oscillations in Human Visual Cortex. Cereb Cortex. doi: 10.1093/cercor/bhu091
[35]  Guyon I, Elisseeff A (2003) An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3: 1157–1182.
[36]  Bishop CM (1995) Neural networks for pattern recognition: Oxford university press.
[37]  Keysers C, Xiao DK, Foldiak P, Perrett DI (2001) The speed of sight. J Cogn Neurosci 13: 90–101. pmid:11224911 doi: 10.1162/089892901564199
[38]  Burr DC, Santoro L (2001) Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision research 41: 1891–1899. pmid:11412882 doi: 10.1016/s0042-6989(01)00072-4
[39]  Holcombe AO (2009) Seeing slow and seeing fast: two limits on perception. Trends in cognitive sciences 13: 216–221. doi: 10.1016/j.tics.2009.02.005. pmid:19386535
[40]  McKeeff TJ, Remus DA, Tong F (2007) Temporal limitations in object processing across the human ventral visual pathway. J Neurophysiol 98: 382–393. pmid:17493920 doi: 10.1152/jn.00568.2006
[41]  Rolls ET, Tovee MJ (1994) Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc Biol Sci 257: 9–15. pmid:8090795 doi: 10.1098/rspb.1994.0087
[42]  Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural computation 4: 1–58. doi: 10.1162/neco.1992.4.1.1
[43]  Geurts P (2010) Bias vs Variance Decomposition for Regression and Classification. Data Mining and Knowledge Discovery Handbook: Springer. pp. 733–746.
[44]  Apple (2011) Dictionary.
[45]  Hung CP, Kreiman G, Poggio T, DiCarlo JJ (2005) Fast readout of object identity from macaque inferior temporal cortex. Science 310: 863–866. pmid:16272124 doi: 10.1126/science.1117593
[46]  Liu H, Agam Y, Madsen JR, Kreiman G (2009) Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 62: 281–290. doi: 10.1016/j.neuron.2009.02.025. pmid:19409272
[47]  Thor DH (1967) Dichoptic viewing and temporal discrimination: an attempted replication. Science 158: 1704–1705. pmid:6059654 doi: 10.1126/science.158.3809.1704
[48]  Honey C, Kirchner H, VanRullen R (2008) Faces in the cloud: Fourier power spectrum biases ultrarapid face detection. Journal of vision 8: 9 1–13. doi: 10.1167/8.12.9
[49]  Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision research 46: 1762–1776. pmid:16289663 doi: 10.1016/j.visres.2005.10.002
[50]  Crouzet SM, Kirchner H, Thorpe SJ (2010) Fast saccades toward faces: face detection in just 100 ms. Journal of vision 10: 16 11–17. doi: 10.1167/10.4.16
[51]  Smallwood J, Davies JB, Heim D, Finnigan F, Sudberry M, et al. (2004) Subjective experience and the attentional lapse: task engagement and disengagement during sustained attention. Conscious Cogn 13: 657–690. pmid:15522626 doi: 10.1016/j.concog.2004.06.003
[52]  Honey CJ, Thesen T, Donner TH, Silbert LJ, Carlson CE, et al. (2012) Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76: 423–434. doi: 10.1016/j.neuron.2012.08.011. pmid:23083743
[53]  Mesgarani N, Cheung C, Johnson K, Chang EF (2014) Phonetic feature encoding in human superior temporal gyrus. Science 343: 1006–1010. doi: 10.1126/science.1245994. pmid:24482117
[54]  Abel TJ, Rhone AE, Nourski KV, Kawasaki H, Oya H, et al. (2015) Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J Neurosci 35: 1513–1520. doi: 10.1523/JNEUROSCI.3387-14.2015. pmid:25632128
[55]  Sun H, Blakely TM, Darvas F, Wander JD, Johnson LA, et al. (2015) Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Clin Neurophysiol. doi: 10.1016/j.clinph.2015.01.005
[56]  Miller KJ, Hermes D, Pestilli F, Wig GS, Rao RPN, et al. (2015) Face percept formation in human ventral temporal cortex. In submission.
[57]  Mitzdorf U (1985) Current Source-Density Method and Application in Cat Cerebral-Cortex—Investigation of Evoked-Potentials and Eeg Phenomena. Physiological Reviews 65: 37–100. pmid:3880898
[58]  VanRullen R, Thorpe SJ (2002) Surfing a spike wave down the ventral stream. Vision Res 42: 2593–2615. pmid:12446033 doi: 10.1016/s0042-6989(02)00298-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133