The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits.
References
[1]
Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. doi: 10.1126/science.1231143. pmid:23287718
[2]
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607. doi: 10.1038/nature09886. pmid:21455174
[3]
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31: 233–239. doi: 10.1038/nbt.2508. pmid:23360965
[4]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. doi: 10.1126/science.1225829. pmid:22745249
[5]
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173–1183. doi: 10.1016/j.cell.2013.02.022. pmid:23452860
[6]
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, et al. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910–918. doi: 10.1016/j.cell.2013.04.025. pmid:23643243
[7]
Bassett AR, Tibbit C, Ponting CP, Liu J-L (2013) Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System. Cell reports 4: 220–228. doi: 10.1016/j.celrep.2013.06.020. pmid:23827738
[8]
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, et al. (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic acids research 41: 7429–7437. doi: 10.1093/nar/gkt520. pmid:23761437
[9]
Cho SW, Lee J, Carroll D, Kim J-S, Lee J (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins. Genetics 195: 1177–1180. doi: 10.1534/genetics.113.155853. pmid:23979576
[10]
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, et al. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research: gkt135. doi: 10.1093/nar/gkt135
[11]
Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, et al. (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature methods 10: 741–743. doi: 10.1038/nmeth.2532. pmid:23817069
[12]
Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences 110: 13904–13909. doi: 10.1073/pnas.1308335110
[13]
Jiang W, Zhou H, Bi H, Fromm M, Yang B, et al. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids research: gkt780. doi: 10.1093/nar/gkt780
[14]
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, et al. (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature biotechnology 31: 681–683. doi: 10.1038/nbt.2661. pmid:23929336
[15]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. (2013) RNA-guided human genome engineering via Cas9. Science 339: 823–826. doi: 10.1126/science.1232033. pmid:23287722
[16]
Nakayama T, Fish MB, Fisher M, Oomen‐Hajagos J, Thomsen GH, et al. (2013) Simple and efficient CRISPR/Cas9‐mediated targeted mutagenesis in Xenopus tropicalis. genesis 51: 835–843. pmid:24123613 doi: 10.1002/dvg.22720
[17]
Niu Y, Shen B, Cui Y, Chen Y, Wang J, et al. (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156: 836–843. doi: 10.1016/j.cell.2014.01.027. pmid:24486104
[18]
Yang D, Xu J, Zhu T, Fan J, Lai L, et al. (2014) Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. Journal of molecular cell biology: mjt047. doi: 10.1093/jmcb/mjt047
[19]
Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific reports 3. doi: 10.1038/srep02510
[20]
Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nature methods 10: 957–963. doi: 10.1038/nmeth.2649. pmid:24076990
[21]
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, et al. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 84–87. doi: 10.1126/science.1247005. pmid:24336571
[22]
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, et al. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature biotechnology. doi: 10.1038/nbt.2884
[23]
Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK (2014) Multiplexed and Programmable Regulation of Gene Networks with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells. Molecular cell 54: 698–710. doi: 10.1016/j.molcel.2014.04.022. pmid:24837679
[24]
Farzadfard F, Perli SD, Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS synthetic biology 2: 604–613. doi: 10.1021/sb400081r. pmid:23977949
[25]
Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic acids research: gku749. doi: 10.1093/nar/gku749
[26]
Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, et al. (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature methods. doi: 10.1038/nmeth.2969
[27]
Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, et al. (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature methods 10: 973–976. doi: 10.1038/nmeth.2600. pmid:23892895
[28]
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature biotechnology 31: 822–826. doi: 10.1038/nbt.2623. pmid:23792628
[29]
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature biotechnology. doi: 10.1038/nbt.2916
[30]
Cho SW, Kim S, Kim Y, Kweon J, Kim HS, et al. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research 24: 132–141. doi: 10.1101/gr.162339.113. pmid:24253446
[31]
Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic acids research: gkt714. doi: 10.1093/nar/gkt714
[32]
Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, et al. (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8: e68708. doi: 10.1371/journal.pone.0068708. pmid:23874735
[33]
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, et al. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature biotechnology 31: 839–843. doi: 10.1038/nbt.2673. pmid:23934178
[34]
Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology. doi: 10.1038/nbt.2909
[35]
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, et al. (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature methods 10: 1116–1121. doi: 10.1038/nmeth.2681. pmid:24076762
[36]
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature biotechnology 32: 279–284. doi: 10.1038/nbt.2808. pmid:24463574
[37]
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology 31: 827–832. doi: 10.1038/nbt.2647. pmid:23873081
[38]
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. doi: 10.1038/nature13011
[39]
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, et al. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature biotechnology. doi: 10.1038/nbt.2908
[40]
Ran F, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389. doi: 10.1016/j.cell.2013.08.021. pmid:23992846
[41]
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, et al. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature biotechnology. doi: 10.1038/nbt.2675
[42]
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, et al. (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature biotechnology. doi: 10.1038/nbt.2889
[43]
Nishimasu H, Ran F, Hsu PD, Konermann S, Shehata SI, et al. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–949. doi: 10.1016/j.cell.2014.02.001. pmid:24529477
[44]
Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, et al. (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proceedings of the National Academy of Sciences: 201402597. doi: 10.1073/pnas.1402597111
[45]
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, et al. (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences 111: 11461–11466. doi: 10.1073/pnas.1405186111
[46]
van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews Microbiology. doi: 10.1038/nrmicro3279
[47]
Dill KA, Ghosh K, Schmit JD (2011) Physical limits of cells and proteomes. Proceedings of the National Academy of Sciences 108: 17876–17882. doi: 10.1073/pnas.1114477108
[48]
Depew D, Wang JC (1975) Conformational fluctuations of DNA helix. Proceedings of the National Academy of Sciences 72: 4275–4279. doi: 10.1073/pnas.72.11.4275
[49]
Zhang Y, Ge X, Yang F, Zhang L, Zheng J, et al. (2014) Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Scientific reports 4. doi: 10.1038/srep05405
[50]
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, et al. (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature biotechnology 33: 187–197. doi: 10.1038/nbt.3117. pmid:25513782
[51]
Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005) Transcriptional regulation by the numbers: models. Current opinion in genetics & development 15: 116–124. doi: 10.1016/j.gde.2005.02.007
[52]
SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33: 415–440. pmid:15139820 doi: 10.1146/annurev.biophys.32.110601.141800
[53]
Sugimoto N, Nakano S-i, Katoh M, Matsumura A, Nakamuta H, et al. (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34: 11211–11216. pmid:7545436 doi: 10.1021/bi00035a029
[54]
Sugimoto N, Nakano M, Nakano S-i (2000) Thermodynamics-structure relationship of single mismatches in RNA/DNA duplexes. Biochemistry 39: 11270–11281. pmid:10985772 doi: 10.1021/bi000819p
[55]
Watkins NE, Kennelly WJ, Tsay MJ, Tuin A, Swenson L, et al. (2011) Thermodynamic contributions of single internal rA· dA, rC· dC, rG· dG and rU· dT mismatches in RNA/DNA duplexes. Nucleic acids research 39: 1894–1902. doi: 10.1093/nar/gkq905. pmid:21071398
[56]
Zhu J, Wartell RM (1999) The effect of base sequence on the stability of RNA and DNA single base bulges. Biochemistry 38: 15986–15993. pmid:10625466
[57]
Wu P, Nakano Si, Sugimoto N (2002) Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. European Journal of Biochemistry 269: 2821–2830. pmid:12071944 doi: 10.1046/j.1432-1033.2002.02970.x
[58]
Huang Y, Chen C, Russu IM (2009) Dynamics and stability of individual base pairs in two homologous RNA? DNA hybrids. Biochemistry 48: 3988–3997. doi: 10.1021/bi900070f. pmid:19296713
[59]
Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527: 110–113. doi: 10.1038/nature15544. pmid:26524520
[60]
Fineran PC, Gerritzen MJ, Suárez-Diez M, Künne T, Boekhorst J, et al. (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences 111: E1629–E1638. doi: 10.1073/pnas.1400071111
[61]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. (2013) Genome engineering using the CRISPR-Cas9 system. Nature protocols 8: 2281–2308. doi: 10.1038/nprot.2013.143. pmid:24157548
[62]
Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nature methods 11: 122–123. doi: 10.1038/nmeth.2812. pmid:24481216
[63]
Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER, et al. (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nature biotechnology 33: 390–394. doi: 10.1038/nbt.3155. pmid:25690852
[64]
Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature biotechnology 33: 139–142. doi: 10.1038/nbt.3149. pmid:25643054
[65]
Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, et al. (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA biology 10: 841–851. doi: 10.4161/rna.24203. pmid:23535272
[66]
Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual review of biochemistry 82: 237–266. doi: 10.1146/annurev-biochem-072911-172315. pmid:23495939
[67]
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, et al. (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997. doi: 10.1126/science.1247997. pmid:24505130
[68]
Fluitt A, Pienaar E, Viljoen H (2007) Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Computational biology and chemistry 31: 335–346. pmid:17897886 doi: 10.1016/j.compbiolchem.2007.07.003
[69]
Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–573. doi: 10.1038/nature13579. pmid:25079318
[70]
Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, et al. (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature structural & molecular biology 18: 529–536. doi: 10.1038/nsmb.2019
[71]
Vologodskii A, Lukashin A, Anshelevich V, Frank-Kamenetskii M (1979) Fluctuations in superhelical DNA. Nucleic acids research 6: 967–982. pmid:155809 doi: 10.1093/nar/6.3.967
[72]
Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proceedings of the National Academy of Sciences 109: E42–E50. doi: 10.1073/pnas.1108229109
[73]
COOK PR, BRAZELL A (1977) The superhelical density of nuclear DNA from human cells. European Journal of Biochemistry 74: 527–532. pmid:852461 doi: 10.1111/j.1432-1033.1977.tb11420.x
[74]
Wang H, Benham CJ (2008) Superhelical destabilization in regulatory regions of stress response genes.
[75]
Deng S, Stein RA, Higgins NP (2005) Organization of supercoil domains and their reorganization by transcription. Molecular microbiology 57: 1511–1521. pmid:16135220 doi: 10.1111/j.1365-2958.2005.04796.x
[76]
Brown PN, Saad Y (1990) Hybrid Krylov methods for nonlinear systems of equations. SIAM Journal on Scientific and Statistical Computing 11: 450–481. doi: 10.1137/0911026
[77]
Mazur AK (2012) Torque transfer coefficient in DNA under torsional stress. Physical Review E 86: 011914. doi: 10.1103/physreve.86.011914
[78]
Roca J (2011) Transcriptional inhibition by DNA torsional stress. Transcription 2: 82–85. pmid:21468234 doi: 10.4161/trns.2.2.14807
[79]
Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nature biotechnology 27: 946–950. doi: 10.1038/nbt.1568. pmid:19801975
[80]
Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498: 19–42. doi: 10.1016/B978-0-12-385120-8.00002-4. pmid:21601672
[81]
Borujeni AE, Channarasappa AS, Salis HM (2013) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic acids research: gkt1139. doi: 10.1093/nar/gkt1139
[82]
Chen Y-J, Liu P, Nielsen AA, Brophy JA, Clancy K, et al. (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature methods 10: 659–664. doi: 10.1038/nmeth.2515. pmid:23727987
[83]
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature methods 6: 343–345. doi: 10.1038/nmeth.1318. pmid:19363495