[1] | Wickner S, Maurizi MR, Gottesman S. Posttranslational Quality Control: Folding, Refolding, and Degrading Proteins. Science. 1999;286:1888–1893. doi: 10.1126/science.286.5446.1888. pmid:10583944
|
[2] | Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 2005;6:519–529. doi: 10.1038/nrm1684. pmid:16072036
|
[3] | Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol. 2008;18:243–257. doi: 10.1016/j.sbi.2008.01.007. pmid:18329872
|
[4] | Sauer RT, Baker TA. AAA+ Proteases: ATP-Fueled Machines of Protein Destruction. Annu Rev Biochem. 2011;80:587–612. doi: 10.1146/annurev-biochem-060408-172623. pmid:21469952
|
[5] | Kessel M, Maurizi MR, Kim B, Kocsis E, Trus BL, Singh SK, et al. Homology in Structural Organization Between E. coli ClpAP Protease and the Eukaryotic 26 S Proteasome. J Mol Biol. 1995;250:587–594. doi: 10.1006/jmbi.1995.0400. pmid:7623377
|
[6] | Ogura T, Wilkinson A. AAA+ superfamily ATPases: common structure–diverse function. Genes to Cells. 2001;6:575–597. doi: 10.1046/j.1365-2443.2001.00447.x. pmid:11473577
|
[7] | Bochtler M, Hartmann C, Song HK, Bourenkov GP, Bartunik HD, Huber R. The structures of HslU and the ATP-dependent protease HslU-HslV. Nature. 2000;403:800–805. doi: 10.1038/35001629. pmid:10693812
|
[8] | Sousa MC, Trame CB, Tsuruta H, Wilbanks SM, Reddy VS, McKay DB. Crystal and Solution Structures of an HslUV Protease-Chaperone Complex. Cell. 2000;103:633–643. pmid:11106733 doi: 10.1016/s0092-8674(00)00166-5
|
[9] | Wang J, Song JJ, Seong IS, Franklin MC, Kamtekar S, Eom SH, et al. Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU. Structure. 2001;9:1107–1116. doi: 10.1016/S0969-2126(01)00670-0. pmid:11709174
|
[10] | Song HK, Hartmann C, Ramachandran R, Bochtler M, Behrendt R, Moroder L, et al. Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci USA. 2000;97:14103–14108. doi: 10.1073/pnas.250491797. pmid:11114186
|
[11] | Wang J. A corrected quaternary arrangement of the peptidase HslV and ATPase HslU in a cocrystal structure. J Struct Biol. 2001;134:15–24. doi: 10.1006/jsbi.2001.4347. pmid:11469873
|
[12] | Guo F, Maurizi M, Esser L, Xia D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J Biol Chem. 2002;277:46743–46752. doi: 10.1074/jbc.M207796200. pmid:12205096
|
[13] | Kim DY, Kim KK. Crystal Structure of ClpX Molecular Chaperone from Helicobacter pylori. J Biol Chem. 2003;278:50664–50670. doi: 10.1074/jbc.M305882200. pmid:14514695
|
[14] | Rohrwild M, Pfeifer G, Santarius U, Muller SA, Huang HC, Engel A, et al. The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Mol Biol. 1997;4:133–139. doi: 10.1038/nsb0297-133.
|
[15] | Ishikawa T, Maurizi MR, Belnap D, Steven AC. ATP-dependent proteases: Docking of components in a bacterial complex. Nature. 2000;408:667–668. doi: 10.1038/35047165. pmid:11130060
|
[16] | Kessel M, Wu WF, Gottesman S, Kocsis E, Steven AC, Maurizi MR. Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett. 1996;398:274–278. doi: 10.1016/S0014-5793(96)01261-6. pmid:8977122
|
[17] | Beuron F, Maurizi MR, Belnap DM, Kocsis E, Booy FP, Kessel M, et al. At Sixes and Sevens: Characterization of the Symmetry Mismatch of the ClpAP Chaperone-Assisted Protease. J Struct Biol. 1998;123:248–259. doi: 10.1006/jsbi.1998.4039. pmid:9878579
|
[18] | Ortega J, Lee HS, Maurizi MR, Steven AC. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. J Struct Biol. 2004;146:217–226. doi: 10.1016/j.jsb.2003.11.023. pmid:15037252
|
[19] | Flynn JM, Neher SB, Kim Y, Sauer RT, Baker TA. Proteomic Discovery of Cellular Substrates of the ClpXP Protease Reveals Five Classes of ClpX-Recognition Signals. MolCell. 2003;11:671–683. doi: 10.1016/s1097-2765(03)00060-1
|
[20] | Gottesman S, Clark W, Maurizi M. The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate. J Biol Chem. 1990;265:7886–7893. pmid:2186030
|
[21] | Levchenko I, Yamauchi M, Baker TA. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 1997;11:1561–1572. doi: 10.1101/gad.11.12.1561. pmid:9203582
|
[22] | Hoskins JR, Kim SY, Wickner S. Substrate Recognition by the ClpA Chaperone Component of ClpAP Protease. J Biol Chem. 2000;275:35361–35367. doi: 10.1074/jbc.M006288200. pmid:10952988
|
[23] | Park E, Rho YM, Koh O, Ahn SW, Seong IS, Song JJ, et al. Role of the GYVG Pore Motif of HslU ATPase in Protein Unfolding and Translocation for Degradation by HslV Peptidase. J Biol Chem. 2005;280:22892–22898. doi: 10.1074/jbc.M500035200. pmid:15849200
|
[24] | Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. Conserved Pore Residues in the AAA Protease FtsH Are Important for Proteolysis and Its Coupling to ATP Hydrolysis. J Biol Chem. 2003;278:50182–50187. doi: 10.1074/jbc.M308327200. pmid:14514680
|
[25] | Martin A, Baker TA, Sauer RT. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol. 2008;15:1147–1151. doi: 10.1038/nsmb.1503. pmid:18931677
|
[26] | Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. ATP-Dependent Proteases Degrade Their Substrates by Processively Unraveling Them from the Degradation Signal. Mol Cell. 2001;7:627–637. doi: 10.1016/S1097-2765(01)00209-X. pmid:11463387
|
[27] | Li H, Carrión-Vázquez M, Oberhauser AF, Marszalek PE, Fernandez JM. Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Biol. 2000;7:1117–1120. doi: 10.1038/81964. pmid:11101892
|
[28] | Kenniston JA, Baker TA, Fernandez JM, Sauer RT. Linkage between ATP Consumption and Mechanical Unfolding during the Protein Processing Reactions of an AAA+ Degradation Machine. Cell. 2003;114:511–520. doi: 10.1016/S0092-8674(03)00612-3. pmid:12941278
|
[29] | Huang YM, Bystroff C. Complementation and reconstitution of fluorescence from circularly permuted and truncated green fluorescent protein. Biochemistry. 2009;48:929–940. doi: 10.1021/bi802027g. pmid:19140681
|
[30] | Nager AR, Baker TA, Sauer RT. Stepwise Unfolding of a β Barrel Protein by the AAA+ ClpXP Protease. J Mol Biol. 2011;413:4–16. doi: 10.1016/j.jmb.2011.07.041. pmid:21821046
|
[31] | Shin Y, Davis JH, Brau RR, Martin A, Kenniston JA, Baker TA, et al. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. PNAS. 2009;106:19340–19345. doi: 10.1073/pnas.0910484106. pmid:19892734
|
[32] | Aubin-Tam ME, Olivares A, Sauer R, Baker T, Lang M. Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine. Cell. 2011;145:257–267. doi: 10.1016/j.cell.2011.03.036. pmid:21496645
|
[33] | Maillard R, Chistol G, Sen M, Righini M, Tan J, Kaiser CM, et al. ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates. Cell. 2011;145:459–469. doi: 10.1016/j.cell.2011.04.010. pmid:21529717
|
[34] | Sen M, Maillard R, Nyquist K, Rodriguez-Aliaga P, Pressé S, Martin A, et al. The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears. Cell. 2013;155:636–646. doi: 10.1016/j.cell.2013.09.022. pmid:24243020
|
[35] | Cordova J, Olivares A, Shin Y, Stinson B, Calmat S, Schmitz K, et al. Stochastic but Highly Coordinated Protein Unfolding and Translocation by the ClpXP Proteolytic Machine. Cell. 2014;158:647–658. doi: 10.1016/j.cell.2014.05.043. pmid:25083874
|
[36] | Olivares AO, Nager AR, Iosefson O, Sauer RT, Baker TA. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat Struct Mol Biol. 2014;21:871–875. doi: 10.1038/nsmb.2885. pmid:25195048
|
[37] | Martin A, Baker TA, Sauer RT. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes. Nat Struct Mol Biol. 2008;15:139–145. doi: 10.1038/nsmb.1380. pmid:18223658
|
[38] | Chistol G, Liu S, Hetherington CL, Moffitt JR, Grimes S, Jardine PJ, et al. High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell. 2012;151:1017–1028. doi: 10.1016/j.cell.2012.10.031. pmid:23178121
|
[39] | Maurizi M, Stan G. ClpX Shifts into High Gear to Unfold Stable Proteins. Cell. 2013;155:502–504. doi: 10.1016/j.cell.2013.10.007. pmid:24243009
|
[40] | Huang L, Kirmizialtin S, Makarov DE. Computer simulations of the translocation and unfolding of a protein pulled mechanically through a pore. J Chem Phys. 2005;123:124903. doi: 10.1063/1.2008231. pmid:16392523
|
[41] | West DK, Brockwell DJ, Paci E. Prediction of the Translocation Kinetics of a Protein from Its Mechanical Properties. Biophys J. 2006;91:L51–53. doi: 10.1529/biophysj.106.089490. pmid:16815903
|
[42] | Szymczak P, Janovjak H. Periodic forces trigger a complex mechanical response in ubiquitin. J Mol Biol. 2009;390:443–456. doi: 10.1016/j.jmb.2009.04.071. pmid:19426737
|
[43] | Wojciechowski M, Szymczak P, Carrión-Vázquez M, Cieplak M. Protein Unfolding by Biological Unfoldases: Insights from Modeling. Biophys J. 2014;107:1661–1668. doi: 10.1016/j.bpj.2014.07.035. pmid:25296319
|
[44] | Feng G, Lu H. Computer simulation of I27 translocation through ClpY reveals a critical role of protein mechanical strength and local stability. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France; 2007.
|
[45] | Tonddast-Navaei S, Stan G. Mechanism of Transient Binding and Release of Substrate Protein during the Allosteric Cycle of the p97 Nanomachine. J Am Chem Soc. 2013;135:14627–14636. doi: 10.1021/ja404051b. pmid:24007343
|
[46] | Koga N, Kameda T, Okazaki K, Takada S. Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proc Natl Acad Sci USA. 2009;106:18237–18242. doi: 10.1073/pnas.0904756106. pmid:19828442
|
[47] | Yoshimoto K, Arora K, Brooks CL III. Hexameric Helicase Deconstructed: Interplay of Conformational Changes and Substrate Coupling. Biophys J. 2010;98:1449–1457. doi: 10.1016/j.bpj.2009.12.4315. pmid:20409463
|
[48] | Jana B, Morcos F, Onuchic JN. From structure to function: the convergence of structure based models and co-evolutionary information. Phys Chem Chem Phys. 2013;16:6496–6507. doi: 10.1039/c3cp55275f.
|
[49] | Ma W, Schulten K. Mechanism of Substrate Translocation by a Ring-Shaped ATPase Motor at Millisecond Resolution. J Am Chem Soc. 2015;137:3031–3040. doi: 10.1021/ja512605w. pmid:25646698
|
[50] | Kravats A, Jayasinghe M, Stan G. Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase. Proc Natl Acad Sci USA. 2011;108:2234–2239. doi: 10.1073/pnas.1014278108. pmid:21266546
|
[51] | Kravats AN, Tonddast-Navaei S, Bucher RJ, Stan G. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines. J Chem Phys. 2013;139:121921. doi: 10.1063/1.4817410. pmid:24089733
|
[52] | Mickler M, Dima RI, Dietz H, Hyeon C, Thirumalai D, Rief M. Revealing the bifurcation in the unfolding pathways of GFP using single molecule experiments and simulations. Proc Natl Acad Sci USA. 2007;104:20268–20273. doi: 10.1073/pnas.0705458104. pmid:18079292
|
[53] | Graham TGW, Best RB. Force-Induced Change in Protein Unfolding Mechanism: Discrete or Continuous Switch? J Phys Chem B. 2011;115:1546–1561. doi: 10.1021/jp110738m. pmid:21271708
|
[54] | Li YD, Lamour G, Gsponer J, Zheng P, Li H. The Molecular Mechanism Underlying Mechanical Anisotropy of the Protein GB1. Biophys J. 2012;103:2361–2368. doi: 10.1016/j.bpj.2012.10.035. pmid:23283235
|
[55] | Valbuena A, Oroz J, Hervás R, Vera AM, Rodríguez D, Menéndez M, et al. On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc Natl Acad Sci USA. 2009;106:13791–13796. doi: 10.1073/pnas.0813093106. pmid:19666489
|
[56] | Best RB, Hummer G, Eaton WA. Native contacts determine protein folding mechanisms in atomistic simulations. Proc Natl Acad Sci USA. 2013;110:17874–17879. doi: 10.1073/pnas.1311599110. pmid:24128758
|
[57] | Sorenson JM, Head-Gordon T. Matching Simulation and Experiment: A New Simplified Model for Simulating Protein Folding. J Comput Biol. 2000;7:469–481. doi: 10.1089/106652700750050899. pmid:11108474
|
[58] | Humphrey W, Dalke A, Schulten K. VMD—Visual Molecular Dynamics. J. Mol. Graphics 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5.
|
[59] | Brockwell DJ, Beddard GS, Paci E, West DK, Olmsted PD, Smith DA, et al. Mechanically unfolding the small, topologically simple protein L. Biophys J. 2005;89:506–519. doi: 10.1529/biophysj.105.061465. pmid:15863479
|
[60] | de Graff AMR, Shannon G, Farrell DW, Williams PM, Thorpe MF. Protein unfolding under force: crack propagation in a network. Biophys J. 2011;101:736–744. doi: 10.1016/j.bpj.2011.05.072. pmid:21806942
|
[61] | West DK, Olmsted PD, Paci E. Mechanical unfolding revisited through a simple but realistic model. J Chem Phys. 2006;124. doi: 10.1063/1.2185100. pmid:16674267
|
[62] | Brown S, Fawzi NJ, Head-Gordon T. Coarse-grained sequences for protein folding and design. Proc Natl Acad Sci USA. 2003;100:10712–10717. doi: 10.1073/pnas.1931882100. pmid:12963815
|
[63] | Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Asymmetric Interactions of ATP with the AAA+ ClpX6 Unfoldase: Allosteric Control of a Protein Machine. Cell. 2005;121:1017–1027. doi: 10.1016/j.cell.2005.05.024. pmid:15989952
|
[64] | Yakamavich JA, Baker TA, Sauer RT. Asymmetric Nucleotide Transactions of the HslUV Protease. J Mol Biol. 2008;380:946–957. doi: 10.1016/j.jmb.2008.05.070. pmid:18582897
|
[65] | Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL. ATP Binds to Proteasomal ATPases in Pairs with Distinct Functional Effects, Implying an Ordered Reaction Cycle. Cell. 2011;144:526–538. doi: 10.1016/j.cell.2011.02.005. pmid:21335235
|
[66] | Iosefson O, Nager AR, Baker TA, Sauer RT. Coordinated gripping of substrate by subunits of a AAA + proteolytic machine. 2015;11:201–206. doi: 10.1038/nchembio.1732
|
[67] | Martin A, Baker TA, Sauer RT. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature. 2005;437:1115–1120. doi: 10.1038/nature04031. pmid:16237435
|
[68] | Sundar S, Baker TA, Sauer RT. The I domain of the AAA+ HsIUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation. Prot Sci. 2012;21:188–198. doi: 10.1002/pro.2001.
|
[69] | Too PHM, Erales J, Simen JD, Marjanovic A, Coffino P. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J Biol Chem. 2013;288:13243–57. doi: 10.1074/jbc.M113.452524. pmid:23530043
|
[70] | Tian L, Holmgren RA, Matouschek A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat Struct Mol Biol. 2005;12:1045–1053. doi: 10.1038/nsmb1018. pmid:16299518
|
[71] | Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006;25:1720–1729. doi: 10.1038/sj.emboj.7601058. pmid:16601692
|
[72] | Vass RH, Chien P. Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus. Proc Natl Acad Sci USA. 2013;110:18138–18143. doi: 10.1073/pnas.1311302110. pmid:24145408
|
[73] | Glynn SE, Nager AR, Baker TA, Sauer RT. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat Struct Mol Biol. 2012;19:616–622. doi: 10.1038/nsmb.2288. pmid:22562135
|
[74] | Burton RE, Siddiqui SM, Kim YI, Baker TA, Sauer RT. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 2001;20:3092–3100. doi: 10.1093/emboj/20.12.3092. pmid:11406586
|
[75] | Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci USA. 2002;17:11037–11042. doi: 10.1073/pnas.172378899.
|
[76] | Huang L, Makarov DE. Translocation of a knotted polypeptide through a pore. J Chem Phys. 2008;129:121107. doi: 10.1063/1.2968554. pmid:19044999
|
[77] | Rosa A, Ventra MD, Micheletti C. Topological Jamming of Spontaneously Knotted Polyelectrolyte Chains Driven Through a Nanopore. Phys Rev Lett. 2012;109:118301. doi: 10.1103/PhysRevLett.109.118301. pmid:23005684
|
[78] | Szymczak P. Translocation of knotted proteins through a pore. Eur Phys J Special Topics. 2014;223:1805–1812. doi: 10.1140/epjst/e2014-02227-6.
|
[79] | Honeycutt JD, Thirumalai D. The nature of folded states of globular—proteins. Biopolymers. 1992;32:695–709. doi: 10.1002/bip.360320610. pmid:1643270
|
[80] | Guo Z, Thirumalai D. Kinetics and Thermodynamics of Folding of a de Novo Designed Four—helix Bundle Protein. J Mol Biol. 1996;263:323–343. doi: 10.1006/jmbi.1996.0578. pmid:8913310
|
[81] | Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A Program for Macromolecular Energy, Minimization and Dynamics Calculations. J Comp Chem. 1983;4:187–217. doi: 10.1002/jcc.540040211.
|
[82] | Brown S, Head-Gordon T. Intermediates and the folding of proteins L and G. Prot Sci. 2004;13:958–970. doi: 10.1110/ps.03316004.
|
[83] | Stan G, Lorimer GH, Thirumalai D, Brooks BR. Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein. Proc Natl Acad Sci USA. 2007;104:8803–8808. doi: 10.1073/pnas.0700607104. pmid:17496143
|
[84] | Klimov DK, Newfield D, Thirumalai D. Simulations of β-hairpin folding confined to spherical pores using distributed computing. Proc Natl Acad Sci USA. 2002;99:8019–8024. doi: 10.1073/pnas.072220699. pmid:12060748
|