全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Josephin Domain Structural Conformations Explored by Metadynamics in Essential Coordinates

DOI: 10.1371/journal.pcbi.1004699

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Josephin Domain (JD), i.e. the N-terminal domain of Ataxin 3 (At3) protein, is an interesting example of competition between physiological function and aggregation risk. In fact, the fibrillogenesis of Ataxin 3, responsible for the spinocerebbellar ataxia 3, is strictly related to the JD thermodynamic stability. Whereas recent NMR studies have demonstrated that different JD conformations exist, the likelihood of JD achievable conformational states in solution is still an open issue. Marked differences in the available NMR models are located in the hairpin region, supporting the idea that JD has a flexible hairpin in dynamic equilibrium between open and closed states. In this work we have carried out an investigation on the JD conformational arrangement by means of both classical molecular dynamics (MD) and Metadynamics employing essential coordinates as collective variables. We provide a representation of the free energy landscape characterizing the transition pathway from a JD open-like structure to a closed-like conformation. Findings of our in silico study strongly point to the closed-like conformation as the most likely for a Josephin Domain in water.

References

[1]  Deriu MA, Grasso G, Licandro G, Danani A, Gallo D, Tuszynski JA, et al. Investigation of the josephin domain protein-protein interaction by molecular dynamics. Salahub D, editor. PLoS One. Public Library of Science; 2014;9: e108677. doi: 10.1371/journal.pone.0108677. pmid:25268243
[2]  Deriu MA, Shkurti A, Paciello G, Bidone TC, Morbiducci U, Ficarra E, et al. Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics. Proteins. 2012;80: 1598–609. doi: 10.1002/prot.24053. pmid:22411308
[3]  Deriu MA, Bidone TC, Mastrangelo F, Di Benedetto G, Soncini M, Montevecchi FM, et al. Biomechanics of actin filaments: a computational multi-level study. J Biomech. Elsevier; 2011;44: 630–6. doi: 10.1016/j.jbiomech.2010.11.014. pmid:21130998
[4]  Pavan GM, Danani A. Dendrimers and dendrons for siRNA binding: computational insights. J Drug Deliv Sci Technol. 2012;22: 83–89. doi: 10.1016/S1773-2247(12)50008-0.
[5]  Pavan GM, Mintzer MA, Simanek EE, Merkel OM, Kissel T, Danani A. Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Biomacromolecules. 2010;11: 721–30. doi: 10.1021/bm901298t. pmid:20131771
[6]  Gershenson A, Gierasch LM, Pastore A, Radford SE. Energy landscapes of functional proteins are inherently risky. Nat Publ Gr. Nature Publishing Group; 2014;10: 884–891. doi: 10.1038/nchembio.1670.
[7]  Laura M, Giuseppe N, Lesley C, Michele V, Annalisa P, Masino L, et al. Functional interactions as a survival strategy against abnormal aggregation. FASEB J. 2011;25: 45–54. doi: 10.1096/fj.10-161208. pmid:20810784
[8]  Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, et al. The gene for Machado–Joseph disease maps to human chromosome 14q. Nat Genet. 1993;4: 300–304. doi: 10.1038/ng0793-300. pmid:8358439
[9]  Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32. 1. Schulenberg T, Ozawa M, Grotzbach G, editors. Nat Genet. Forschungszentrum Karlsruhe; 1994;8: 221–228. doi: 10.1038/ng1194-221. pmid:7874163
[10]  Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996;39: 490–9. doi: 10.1002/ana.410390411. pmid:8619527
[11]  Ranum LP, Lundgren JK, Schut LJ, Ahrens MJ, Perlman S, Aita J, et al. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am J Hum Genet. 1995;57: 603–608.
[12]  Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23: 217–47. doi: 10.1146/annurev.neuro.23.1.217. pmid:10845064
[13]  Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, et al. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet. 1995;57: 54–61.
[14]  Riess O, Rüb U, Pastore A, Bauer P, Sch?ls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7: 125–37. doi: 10.1007/s12311-008-0013-4. pmid:18418689
[15]  L . Robertson A, P . Bottomley S. Towards the Treatment of Polyglutamine Diseases: The Modulatory Role of Protein Context. Curr Med Chem. 2010;17: 3058–3068. doi: 10.2174/092986710791959800. pmid:20629626
[16]  Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A. Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J Mol Biol. 2004;344: 1021–35. doi: 10.1016/j.jmb.2004.09.065. pmid:15544810
[17]  Masino L, Nicastro G, De Simone A, Calder L, Molloy J, Pastore A. The Josephin domain determines the morphological and mechanical properties of ataxin-3 fibrils. Biophys J. Biophysical Society; 2011;100: 2033–2042. doi: 10.1016/j.bpj.2011.02.056.
[18]  Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Fraternali F, et al. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers. 2009;91: 1203–14. doi: 10.1002/bip.21210. pmid:19382171
[19]  Ellisdon AM, Thomas B, Bottomley SP. The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem. 2006;281: 16888–96. doi: 10.1074/jbc.M601470200. pmid:16624810
[20]  Chow MKM, Paulson HL, Bottomley SP. Destabilization of a Non-pathological Variant of Ataxin-3 Results in Fibrillogenesis via a Partially Folded Intermediate: A Model for Misfolding in Polyglutamine Disease. J Mol Biol. 2004;335: 333–341. doi: 10.1016/j.jmb.2003.08.064. pmid:14659761
[21]  Natalello A, Frana AMA, Relini A, Apicella A, Invernizzi G, Casari C, et al. A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. Buckle AM, editor. PLoS One. Public Library of Science; 2011;6: 10.
[22]  Ellisdon AM, Pearce MC, Bottomley SP. Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol. 2007;368: 595–605. doi: 10.1016/j.jmb.2007.02.058. pmid:17362987
[23]  Saunders HM, Gilis D, Rooman M, Dehouck Y, Robertson AL, Bottomley SP. Flanking domain stability modulates the aggregation kinetics of a polyglutamine disease protein. Protein Sci. 2011;20: 1675–81. doi: 10.1002/pro.698. pmid:21780213
[24]  Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver J a, et al. Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A. 2010;107: 10424–9. doi: 10.1073/pnas.0914773107. pmid:20484674
[25]  Marchal S, Shehi E, Harricane M-C, Fusi P, Heitz F, Tortora P, et al. Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem. 2003;278: 31554–63. doi: 10.1074/jbc.M304205200. pmid:12766160
[26]  Blount JR, Tsou W-L, Ristic G, Burr AA, Ouyang M, Galante H, et al. Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23. Nat Commun. 2014;5: 4638. doi: 10.1038/ncomms5638. pmid:25144244
[27]  Nicastro G, Menon RP, Masino L, Pastore A. Understanding the plasticity of the ubiquitin-protein recognition code: the josephin domain of ataxin-3 is a diubiquitin binding motif. To be Pubblished.: 10.2210/pdb2jri/pdb. doi: 10.2210/pdb2jri/pdb.
[28]  Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci U S A. 2005;102: 10493–8. doi: 10.1073/pnas.0501732102. pmid:16020535
[29]  Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci U S A. 2005;102: 12700–5. doi: 10.1073/pnas.0506344102. pmid:16118278
[30]  Satoh T, Sumiyoshi A, Yagi-Utsumi M, Sakata E, Sasakawa H, Kurimoto E, et al. Mode of substrate recognition by the Josephin domain of ataxin-3, which has an endo-type deubiquitinase activity. FEBS Lett. 2014;588: 4422–30. doi: 10.1016/j.febslet.2014.10.013. pmid:25448680
[31]  Sanfelice D, De Simone A, Cavalli A, Faggiano S, Vendruscolo M, Pastore A. Characterization of the conformational fluctuations in the Josephin domain of ataxin-3. Biophys J. 2014;107: 2932–40. doi: 10.1016/j.bpj.2014.10.008. pmid:25517158
[32]  Narayanan C, Weinstock DS, Wu K-P, Baum J, Levy RM. Investigation of the Polymeric Properties of α-Synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study. J Chem Theory Comput. 2012;8: 3929–3942. doi: 10.1021/ct300241t. pmid:23162382
[33]  Wu K-P, Weinstock DS, Narayanan C, Levy RM, Baum J. Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J Mol Biol. 2009;391: 784–96. doi: 10.1016/j.jmb.2009.06.063. pmid:19576220
[34]  Wei G, Shea J-E. Effects of solvent on the structure of the Alzheimer amyloid-beta(25–35) peptide. Biophys J. 2006;91: 1638–47. doi: 10.1529/biophysj.105.079186. pmid:16766615
[35]  De Simone A, Kitchen C, Kwan AH, Sunde M, Dobson CM, Frenkel D. Intrinsic disorder modulates protein self-assembly and aggregation. Proc Natl Acad Sci U S A. 2012;109: 6951–6. doi: 10.1073/pnas.1118048109. pmid:22509003
[36]  Baumketner A, Shea J-E. Folding landscapes of the Alzheimer amyloid-beta(12–28) peptide. J Mol Biol. 2006;362: 567–79. doi: 10.1016/j.jmb.2006.07.032. pmid:16930617
[37]  Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics. 2008. p. 126601. doi: 10.1088/0034-4885/71/12/126601.
[38]  Spiwok V, Lipovová P, Králová B. Metadynamics in essential coordinates: free energy simulation of conformational changes. J Phys Chem B. 2007;111: 3073–6. doi: 10.1021/jp068587c. pmid:17388445
[39]  Limongelli V, Bonomi M, Parrinello M. Funnel metadynamics as accurate binding free-energy method. Proc Natl Acad Sci U S A. 2013;110: 6358–6363. doi: 10.1073/pnas.1303186110. pmid:23553839
[40]  Granata D, Camilloni C, Vendruscolo M, Laio A. Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc Natl Acad Sci U S A. 2013;110: 6817–22. doi: 10.1073/pnas.1218350110. pmid:23572592
[41]  Sutto L, Marsili S, Gervasio FL. New advances in metadynamics. Wiley Interdiscip Rev Comput Mol Sci. 2012;2: 771–779. doi: 10.1002/wcms.1103.
[42]  Nicastro G, Habeck M, Masino L, Svergun DI, Pastore A. Structure validation of the Josephin domain of ataxin-3: conclusive evidence for an open conformation. J Biomol NMR. 2006;36: 267–77. doi: 10.1007/s10858-006-9092-z. pmid:17096206
[43]  Apicella A, Soncini M, Deriu MA, Natalello A, Bonanomi M, Dellasega D, et al. A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected. PLoS One. Public Library of Science; 2013;8: e58794. doi: 10.1371/journal.pone.0058794. pmid:23527026
[44]  Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65: 712–25. doi: 10.1002/prot.21123. pmid:16981200
[45]  Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78: 1950–8. doi: 10.1002/prot.22711. pmid:20408171
[46]  Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE. Systematic validation of protein force fields against experimental data. PLoS One. 2012;7: e32131. doi: 10.1371/journal.pone.0032131. pmid:22384157
[47]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79: 926. doi: 10.1063/1.445869.
[48]  Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. AIP; 2007;126: 014101. doi: 10.1063/1.2408420. pmid:17212484
[49]  Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. AIP; 1984;81: 3684–3690. doi: 10.1063/1.448118.
[50]  Sun X, Cheng J, Wang X, Tang Y, ?gren H, Tu Y. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1. Sci Rep. 2015;5: 8066. doi: 10.1038/srep08066. pmid:25628267
[51]  Sun H, Li Y, Tian S, Wang J, Hou T. P-loop Conformation Governed Crizotinib Resistance in G2032R-Mutated ROS1 Tyrosine Kinase: Clues from Free Energy Landscape. Briggs JM, editor. PLoS Comput Biol. 2014;10: e1003729. doi: 10.1371/journal.pcbi.1003729. pmid:25033171
[52]  Manara RMA, Jayne Wallace E, Khalid S. DNA sequencing with MspA: Molecular Dynamics simulations reveal free-energy differences between sequencing and non-sequencing mutants. Sci Rep. 2015;5: 12783. doi: 10.1038/srep12783. pmid:26255609
[53]  Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4: 435–447. doi: 10.1021/ct700301q. pmid:26620784
[54]  Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14: 33–8, 27–8.
[55]  Heinig M, Frishman D. STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 2004;32: W500–W502. doi: 10.1093/nar/gkh429. pmid:15215436
[56]  Maisuradze GG, Liwo A, Scheraga H a. Principal component analysis for protein folding dynamics. J Mol Biol. Elsevier Ltd; 2009;385: 312–29. doi: 10.1016/j.jmb.2008.10.018. pmid:18952103
[57]  Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009;180: 1961–1972. doi: 10.1016/j.cpc.2009.05.011.
[58]  Barducci A, Bonomi M, Parrinello M. Metadynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2011. pp. 826–843. doi: 10.1002/wcms.31.
[59]  Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci U S A. 2002;99: 12562–12566. doi: 10.1073/pnas.202427399. pmid:12271136
[60]  Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13: 1011–1021. doi: 10.1002/jcc.540130812.
[61]  Bonomi M, Barducci A, Parrinello M. Reconstructing the equilibrium boltzmann distribution from well-tempered metadynamics. J Comput Chem. 2009;30: 1615–1621. doi: 10.1002/jcc.21305. pmid:19421997
[62]  Formoso E, Limongelli V, Parrinello M. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase. Sci Rep. 2015;5: 8425. doi: 10.1038/srep08425. pmid:25672826
[63]  Berteotti A, Cavalli A, Branduardi D, Gervasio FL, Recanatini M, Parrinello M. Protein Conformational Transitions: The Closure Mechanism of a Kinase Explored by Atomistic Simulations. J Am Chem Soc. 2009;131: 244–250. doi: 10.1021/ja806846q. pmid:19067513
[64]  Barducci A, Bonomi M, Prakash MK, Parrinello M. Free-energy landscape of protein oligomerization from atomistic simulations. Proc Natl Acad Sci. 2013;110: E4708–E4713. doi: 10.1073/pnas.1320077110. pmid:24248370
[65]  Drinkwater N, Cossins BP, Keeble AH, Wright M, Cain K, Hailu H, et al. Human immunoglobulin E flexes between acutely bent and extended conformations. Nat Struct Mol Biol. 2014;21: 397–404. doi: 10.1038/nsmb.2795. pmid:24632569
[66]  Sicard F, Senet P. Reconstructing the free-energy landscape of Met-enkephalin using dihedral principal component analysis and well-tempered metadynamics. J Chem Phys. 2013;138: 235101. doi: 10.1063/1.4810884. pmid:23802984
[67]  Leone V, Lattanzi G, Molteni C, Carloni P. Mechanism of Action of Cyclophilin A Explored by Metadynamics Simulations. Pettitt BM, editor. PLoS Comput Biol. 2009;5: e1000309. doi: 10.1371/journal.pcbi.1000309. pmid:19282959
[68]  Zhang Y, Niu H, Li Y, Chu H, Shen H, Zhang D, et al. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation. Sci Rep. 2015;5: 8405. doi: 10.1038/srep08405. pmid:25672880
[69]  Spiwok V, Oborsky P, Pazúriková J, K?enek A, Králová B. Nonlinear vs. linear biasing in Trp-cage folding simulations. J Chem Phys. 2015;142: 115101. doi: 10.1063/1.4914828. pmid:25796266

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133