[1] | Vincent SB (1912) The functions of the vibrissae in the behavior of the white rat: University of Chicago.
|
[2] | Welker W (1964) Analysis of sniffing of the albino rat. Behaviour: 223–244.
|
[3] | Deschenes M, Moore J, Kleinfeld D (2012) Sniffing and whisking in rodents. Current opinion in neurobiology 22: 243–250. doi: 10.1016/j.conb.2011.11.013. pmid:22177596
|
[4] | Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. The Journal of neuroscience 23: 6510–6519. pmid:12878692
|
[5] | Moore JD, Deschnes M, Furuta T, Huber D, Smear MC, et al. (2013) Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature.
|
[6] | Knutsen PM, Biess A, Ahissar E (2008) Vibrissal kinematics in 3D: Tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59: 35–42. doi: 10.1016/j.neuron.2008.05.013. pmid:18614027
|
[7] | Towal RB, Quist BW, Gopal V, Solomon JH, Hartmann MJ (2011) The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact. PLoS computational biology 7. doi: 10.1371/journal.pcbi.1001120
|
[8] | Knutsen PM, Ahissar E (2009) Orthogonal coding of object location. Trends in Neurosciences 32: 101–109. doi: 10.1016/j.tins.2008.10.002. pmid:19070909
|
[9] | Mehta SB, Whitmer D, Figueroa R, Williams BA, Kleinfeld D (2007) Active spatial perception in the vibrissa scanning sensorimotor system. PLoS biology 5: e15. pmid:17227143 doi: 10.1371/journal.pbio.0050015
|
[10] | Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience 10: 2638–2648. pmid:2388081
|
[11] | Gao P, Bermejo R, Zeigler HP (2001) Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator. The Journal of Neuroscience 21: 5374–5380. pmid:11438614
|
[12] | Gao P, Ploog B, Zeigler H (2003) Whisking as a “voluntary” response: operant control of whisking parameters and effects of whisker denervation. Somatosensory & motor research 20: 179–189. doi: 10.1080/08990220310001623031-411
|
[13] | Hill DN, Bermejo R, Zeigler HP, Kleinfeld D (2008) Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. The Journal of Neuroscience 28: 3438–3455. doi: 10.1523/JNEUROSCI.5008-07.2008. pmid:18367610
|
[14] | Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. Journal of Neuroscience 26: 8838–8846. pmid:16928873 doi: 10.1523/jneurosci.0581-06.2006
|
[15] | Towal RB, Hartmann MJ (2008) Variability in velocity profiles during free-air whisking behavior of unrestrained rats. Journal of neurophysiology 100: 740–752. doi: 10.1152/jn.01295.2007. pmid:18436634
|
[16] | Bermejo R, Friedman W, Zeigler H (2005) Topography of whisking II: interaction of whisker and pad. Somatosensory & motor research 22: 213–220. doi: 10.1080/08990220500262505
|
[17] | Bermejo R, Vyas A, Zeigler HP (2002) Topography of rodent whisking—I. Two-dimensional monitoring of whisker movements. Somatosensory & motor research 19: 341–346. doi: 10.1080/0899022021000037809
|
[18] | Harvey M, Bermejo R, Zeigler H (2001) Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Somatosensory & motor research 18: 211–222. doi: 10.1080/01421590120072204
|
[19] | Grant RA, Haidarliu S, Kennerley NJ, Prescott TJ (2013) The evolution of active vibrissal sensing in mammals: evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica. The Journal of experimental biology 216: 3483–3494. doi: 10.1242/jeb.087452. pmid:23737559
|
[20] | Huet LA, Hartmann MJZ (2014, accepted) The search space of the rat during whisking behavior. Journal of Experimental Biology.
|
[21] | Hartley R, Zisserman A (2003) Multiple view geometry in computer vision: Cambridge university press.
|
[22] | Towal RB, Hartmann MJ. Principles and applications of active tactile sensing strategies in the rat vibrissal system; 2010 2010. IEEE. pp. 2230–2234.
|
[23] | Stackman RW, Taube JS (1998) Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. The Journal of neuroscience 18: 9020–9037. pmid:9787007
|
[24] | Knutsen PM, Pietr M, Ahissar E (2006) Haptic object localization in the vibrissal system: Behavior and performance. Journal of Neuroscience 26: 8451–8464. pmid:16914670 doi: 10.1523/jneurosci.1516-06.2006
|
[25] | Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. Journal of neurophysiology 89: 104–117. pmid:12522163 doi: 10.1152/jn.00600.2002
|
[26] | Lefort S, Tomm C, Floyd Sarria J-C, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61: 301–316. doi: 10.1016/j.neuron.2008.12.020. pmid:19186171
|
[27] | Meyer HS, Schwarz D, Wimmer VC, Schmitt AC, Kerr JN, et al. (2011) Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A. Proceedings of the National Academy of Sciences 108: 16807–16812. doi: 10.1073/pnas.1113648108. pmid:21949377
|
[28] | Meyer HS, Wimmer VC, Oberlaender M, De Kock CP, Sakmann B, et al. (2010) Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cerebral cortex 20: 2277–2286. doi: 10.1093/cercor/bhq067. pmid:20534784
|
[29] | Varga Z, Jia H, Sakmann B, Konnerth A (2011) Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proceedings of the National Academy of Sciences 108: 15420–15425. doi: 10.1073/pnas.1112355108. pmid:21876170
|
[30] | Grant RA, Sperber AL, Prescott TJ (2012) The role of orienting in vibrissal touch sensing. Frontiers in behavioral neuroscience 6. doi: 10.3389/fnbeh.2012.00039
|
[31] | Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B-Biological Sciences 274: 1035–1041. pmid:17331893 doi: 10.1098/rspb.2006.0347
|
[32] | Wineski LE (1983) Movements of the cranial vibrissae in the golden hamster (Mesocricetus auratus). Journal of Zoology 200: 261–280. doi: 10.1111/j.1469-7998.1983.tb05788.x
|
[33] | Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609. pmid:8637596 doi: 10.1038/381607a0
|
[34] | Reinagel P, Zador AM (1999) Natural scene statistics at the centre of gaze. Network: Computation in Neural Systems 10: 341–350. pmid:10695763 doi: 10.1088/0954-898x/10/4/304
|
[35] | Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active Touch Sensing in the Rat: Anticipatory and Regulatory Control of Whisker Movements During Surface Exploration. Journal of Neurophysiology 101: 862–874. doi: 10.1152/jn.90783.2008. pmid:19036871
|
[36] | Patrick JR, Laughlin RM (1934) Is the wall-seeking tendency in the white rat an instinct? The Pedagogical Seminary and Journal of Genetic Psychology 44: 378–389. doi: 10.1080/08856559.1934.10533694
|
[37] | Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behavioural brain research 84: 81–97. pmid:9079775 doi: 10.1016/s0166-4328(97)83328-1
|
[38] | Arkley K, Grant RA, Mitchinson B, Prescott TJ (2014) Strategy change in vibrissal active sensing during rat locomotion. Current Biology 24: 1507–1512. doi: 10.1016/j.cub.2014.05.036. pmid:24954047
|
[39] | Thé L, Wallace ML, Chen CH, Chorev E, Brecht M (2013) Structure, function, and cortical representation of the rat submandibular whisker trident. The Journal of Neuroscience 33: 4815–4824. doi: 10.1523/JNEUROSCI.4770-12.2013. pmid:23486952
|
[40] | Hartmann MJZ (2001) Active sensing capabilities of the rat whisker system. Autonomous Robots 11: 249–254.
|
[41] | Straile WE (1960) Sensory hair follicles in mammalian skin: The tylotrich follicle. American Journal of Anatomy 106: 133–147. doi: 10.1002/aja.1001060206
|
[42] | Haidarliu S, Golomb D, Kleinfeld D, Ahissar E (2012) Dorsorostral Snout Muscles in the Rat Subserve Coordinated Movement for Whisking and Sniffing. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 295: 1181–1191. doi: 10.1002/ar.22501
|
[43] | Haidarliu S, Kleinfeld D, Ahissar E (2013) Mediation of Muscular Control of Rhinarial Motility in Rats by the Nasal Cartilaginous Skeleton. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 296: 1821–1832. doi: 10.1002/ar.22822. pmid:24249396
|
[44] | Haidarliu S, Simony E, Golomb D, Ahissar E (2010) Muscle Architecture in the Mystacial Pad of the Rat. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 293: 1192–1206. doi: 10.1002/ar.21156
|
[45] | Haidarliu S, Simony E, Golomb D, Ahissar E (2011) Collagenous Skeleton of the Rat Mystacial Pad. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 294: 764–773. doi: 10.1002/ar.21371
|
[46] | Simony E, Bagdasarian K, Herfst L, Brecht M, Ahissar E, et al. (2010) Temporal and Spatial Characteristics of Vibrissa Responses to Motor Commands. Journal of Neuroscience 30: 8935–8952. doi: 10.1523/JNEUROSCI.0172-10.2010. pmid:20592215
|
[47] | Mitchinson B, Prescott TJ (2013) Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat. PLoS computational biology 9: e1003236. doi: 10.1371/journal.pcbi.1003236. pmid:24086120
|
[48] | Quist BW, Hartmann MJZ (2012) Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. Journal of Neurophysiology 107: 2298–2312. doi: 10.1152/jn.00372.2011. pmid:22298834
|
[49] | Quist B, Seghete V, Huet L, Murphey T, Hartmann M (2014, in press) Modeling forces and moments at the base of a rat vibrissa during whisking in free-air and whisking against an object. Journal of Neuroscience.
|
[50] | Sofroniew NJ, Cohen JD, Lee AK, Svoboda K (2014) Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality. The Journal of Neuroscience 34: 9537–9550. doi: 10.1523/JNEUROSCI.0712-14.2014. pmid:25031397
|
[51] | Lewicki MS (2002) Efficient coding of natural sounds. Nature neuroscience 5: 356–363. pmid:11896400 doi: 10.1038/nn831
|
[52] | Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annual review of neuroscience 24: 1193–1216. pmid:11520932 doi: 10.1146/annurev.neuro.24.1.1193
|
[53] | Vinje WE, Gallant JL (2002) Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. The Journal of Neuroscience 22: 2904–2915. pmid:11923455
|
[54] | Furuta T, Nakamura K, Deschenes M (2006) Angular tuning bias of vibrissa-responsive cells in the paralemniscal pathway. The Journal of neuroscience 26: 10548–10557. pmid:17035540 doi: 10.1523/jneurosci.1746-06.2006
|
[55] | Ahl A (1986) The role of vibrissae in behavior: a status review. Veterinary research communications 10: 245–268. pmid:3526705 doi: 10.1007/bf02213989
|