[1] | Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53. pmid:3299384 doi: 10.1073/pnas.84.15.5449
|
[2] | Soravia E, Martini G, Zasloff M. Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Lett. 1988;228(2):337–40. pmid:3125066 doi: 10.1016/0014-5793(88)80027-9
|
[3] | Baker M a., Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 1993;53(13):3052–7. pmid:8319212
|
[4] | Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–75. pmid:18078805 doi: 10.1016/j.bbamem.2007.11.008
|
[5] | Marion D, Zasloff M, Bax A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett. 1988;227(1):21–6. pmid:3338566 doi: 10.1016/0014-5793(88)81405-4
|
[6] | Bechinger B, Zasloff M, Opella SJ. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993;2(12):2077–84. pmid:8298457 doi: 10.1002/pro.5560021208
|
[7] | Bechinger B, Zasloff M, Opella SJ. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998;74(2 Pt 1):981–7. pmid:9533709 doi: 10.1016/s0006-3495(98)74021-4
|
[8] | Juretic D, Hendler RW, Kamp F, Caughey WS, Zasloff M, Westerhoff H V. Magainin Oligomers Reversibly Dissipate. DELTA.mu.H+ in Cytochrome Oxidase Liposomes. Biochemistry. 1994;33(15):4562–70. pmid:8161511 doi: 10.1021/bi00181a017
|
[9] | Cruciani R a, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991;88(9):3792–6. pmid:1708887 doi: 10.1073/pnas.88.9.3792
|
[10] | Matsuzaki K, Mitani Y, Akada KY, Murase O, Yoneyama S, Zasloff M, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37(43):15144–53. pmid:9790678 doi: 10.1021/bi9811617
|
[11] | Cruciani RA, Barker JL, Durell SR, Raghunathan G, Robert Guy H, Zasloff M, et al. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol Mol Pharmacol. 1992;226(4):287–96. pmid:1383011 doi: 10.1016/0922-4106(92)90045-w
|
[12] | Westerhoff H V, Jureti? D, Hendler RW, Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci U S A. 1989;86(17):6597–601. pmid:2671997 doi: 10.1073/pnas.86.17.6597
|
[13] | Ludtke SJ, He K, Wu Y, Huang HW. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta—Biomembr. 1994;1190(1):181–4. pmid:8110813 doi: 10.1016/0005-2736(94)90050-7
|
[14] | Ludtke SJ, He K, Heller WT, Harroun T a., Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35(43):13723–8. pmid:8901513 doi: 10.1021/bi9620621
|
[15] | Han M, Mei Y, Khant H, Ludtke SJ. Characterization of antibiotic peptide pores using cryo-EM and comparison to neutron scattering. Biophys J. 2009;97(1):164–72. doi: 10.1016/j.bpj.2009.04.039. pmid:19580754
|
[16] | Gregory SM, Pokorny A, Almeida PFF. Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys J. 2009;96(1):116–31. doi: 10.1016/j.bpj.2008.09.017. pmid:19134472
|
[17] | Tamba Y, Yamazaki M. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B. 2009;113(14):4846–52. doi: 10.1021/jp8109622. pmid:19267489
|
[18] | Matsuzaki K, Murase O, Miyajima K. Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry. 1995;34(39):12553–9. pmid:7548003 doi: 10.1021/bi00039a009
|
[19] | Andreu D, Aschauer H, Kreil G, Merrifield RB. Solid-phase synthesis of PYLa and isolation of its natural counterpart, PGLa [PYLa-(4–24)] from skin secretion of Xenopus laevis. Eur J Biochem. 1985;149(3):531–5. pmid:3839186 doi: 10.1111/j.1432-1033.1985.tb08957.x
|
[20] | Vaz Gomes a, de Waal a, Berden J a, Westerhoff H V. Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes. Biochemistry. 1993;32(20):5365–72. pmid:8499441 doi: 10.1021/bi00071a011
|
[21] | Wieprecht T, Apostolov O, Beyermann M, Seelig J. Membrane binding and pore formation of the antibacterial peptide PGLa: Thermodynamic and mechanistic aspects. Biochemistry. 2000;39(2):442–52. pmid:10631006 doi: 10.1021/bi992146k
|
[22] | Lohner K, Prossnigg F. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Biochim Biophys Acta—Biomembr. 2009;1788(8):1656–66. pmid:19481533 doi: 10.1016/j.bbamem.2009.05.012
|
[23] | Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Ulrich AS. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson. 2004;168(1):153–63. pmid:15082261 doi: 10.1016/j.jmr.2004.02.008
|
[24] | Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Afonin S, Strandberg E, et al. Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR. Biophys J. 2005;88(5):3392–7. pmid:15695635 doi: 10.1529/biophysj.104.056424
|
[25] | Williams RW, Starman R, Taylor KM, Gable K, Beeler T, Zasloff M, et al. Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry. 1990;29(18):4490–6. pmid:2350550 doi: 10.1021/bi00470a031
|
[26] | Westerhoff H V., Zasloff M, Rosner JL, Hendler RW, De Waal a., Vaz Gomes a, et al. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem. 1995;228(2):257–64. pmid:7705337 doi: 10.1111/j.1432-1033.1995.00257.x
|
[27] | Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura a, Tachi T, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry. 2001;40(41):12395–9. pmid:11591159 doi: 10.1021/bi011413v
|
[28] | Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. J Biol Chem. 2006;281(43):32089–94. pmid:16877761 doi: 10.1074/jbc.m604759200
|
[29] | Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: Structural insights into the synergistic enhancement of the antimicrobial activities of pgla and magainin 2. Biophys J. 2011;100(6):1473–80. doi: 10.1016/j.bpj.2011.01.070. pmid:21402029
|
[30] | Strandberg E, Zerweck J, Wadhwani P, Ulrich AS. Synergistic insertion of antimicrobial magainin-Family peptides in membranes depends on the lipid spontaneous curvature. Biophys J. 2013;104(6):L9–11. doi: 10.1016/j.bpj.2013.01.047. pmid:23528099
|
[31] | Leontiadou H, Mark AE, Marrink SJ. Antimicrobial peptides in action. J Am Chem Soc. 2006;128(9):12156–61. pmid:16967965 doi: 10.1021/ja062927q
|
[32] | Tachi T, Epand RF, Epand RM, Matsuzaki K. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry. 2002;41(34):10723–31. pmid:12186559 doi: 10.1021/bi0256983
|
[33] | Rzepiela AJ, Sengupta D, Goga N, Marrink SJ. Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discuss. 2010;144:431–43. pmid:20158042 doi: 10.1039/b901615e
|
[34] | Mihajlovic M, Lazaridis T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim Biophys Acta—Biomembr. 2012;1818(5):1274–83. pmid:22290189 doi: 10.1016/j.bbamem.2012.01.016
|
[35] | Woo H-J, Wallqvist A. Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study. J Phys Chem B. 2011;115(25):8122–9. doi: 10.1021/jp2023023. pmid:21651300
|
[36] | Santo KP, Berkowitz ML. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: results from coarse-grained simulations. J Phys Chem B. 2012;116(9):3021–30. doi: 10.1021/jp212018f. pmid:22303892
|
[37] | Han E, Lee H. Synergistic effects of magainin 2 and PGLa on their heterodimer formation, aggregation, and insertion into the bilayer. RSC Adv. 2015;5(3):2047–55. doi: 10.1039/c4ra08480b
|
[38] | Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Dimer structure of magainin 2 bound to phospholipid vesicles. Biopolymers. 2002;64(6):314–27. pmid:12124849 doi: 10.1002/bip.10198
|
[39] | Hayouka Z, Mortenson DE, Kreitler DF, Weisblum B, Forest KT, Gellman SH. Evidence for phenylalanine zipper-mediated dimerization in the X-ray crystal structure of a magainin 2 analogue. J Am Chem Soc. 2013;135(42):15738–41. doi: 10.1021/ja409082w. pmid:24102563
|
[40] | Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994;33(11):3342–9. pmid:8136371 doi: 10.1021/bi00177a027
|
[41] | Tamba Y, Ariyama H, Levadny V, Yamazaki M. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B. 2010;114(37):12018–26. doi: 10.1021/jp104527y. pmid:20799752
|
[42] | Imura Y, Choda N, Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J. 2008;95(12):5757–65. doi: 10.1529/biophysj.108.133488. pmid:18835901
|
[43] | Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 2001;81(3):1475–85. pmid:11509361 doi: 10.1016/s0006-3495(01)75802-x
|
[44] | Leveritt JM, Pino-Angeles A, Lazaridis T. The Structure of a Melittin-Stabilized Pore. Biophys J. 2015;108(10):2424–6. doi: 10.1016/j.bpj.2015.04.006. pmid:25992720
|
[45] | Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL, et al. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry. 1997;36(20):6124–32. pmid:9166783 doi: 10.1021/bi9619987
|
[46] | Wieprecht T, Apostolov O, Beyermann M, Seelig J. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol. 1999;294(3):785–94. pmid:10610796 doi: 10.1006/jmbi.1999.3268
|
[47] | Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Biochim Biophys Acta. 2015;1848(9):1944–54 doi: 10.1016/j.bbamem.2015.02.019. pmid:25726906
|
[48] | Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochim Biophys Acta—Biomembr. 2006;1758(9):1330–42. pmid:16716250 doi: 10.1016/j.bbamem.2006.02.029
|
[49] | Ulmschneider JP, Smith JC, Ulmschneider MB, Ulrich AS, Strandberg E. Reorientation and dimerization of the membrane-bound antimicrobial peptide pgla from microsecond all-atom MD simulations. Biophys J. 2012;103(3):472–82. doi: 10.1016/j.bpj.2012.06.040. pmid:22947863
|
[50] | Jo E, Blazyk J, Boggs JM. Insertion of Magainin into the Lipid Bilayer Detected Using Lipid Photolabels Insertion of Magainin into the Lipid Bilayer Detected Using Lipid Photolabels ?. Biochemistry. 1998;37(39):13791–9. pmid:9753468 doi: 10.1021/bi980855c
|
[51] | Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802. pmid:16222654 doi: 10.1002/jcc.20289
|
[52] | Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135–45. doi: 10.1002/jcc.23354. pmid:23832629
|
[53] | Shan Y, Klepeis JL, Eastwood MP, Dror RO, Shaw DE. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J Chem Phys. 2005;122(5):54101. pmid:15740304 doi: 10.1063/1.1839571
|
[54] | Lippert RA, Predescu C, Ierardi DJ, Mackenzie KM, Eastwood MP, Dror RO, et al. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J Chem Phys. 2013;139(16):164106. doi: 10.1063/1.4825247. pmid:24182003
|
[55] | Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33–8. pmid:8744570 doi: 10.1016/0263-7855(96)00018-5
|
[56] | Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614. doi: 10.1002/jcc.21287. pmid:19444816
|
[57] | Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013;9(7):3084–95. doi: 10.1021/ct400341p. pmid:26583988
|