全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pore Structure and Synergy in Antimicrobial Peptides of the Magainin Family

DOI: 10.1371/journal.pcbi.1004570

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magainin 2 and PGLa are among the best-studied cationic antimicrobial peptides. They bind preferentially to negatively charged membranes and apparently cause their disruption by the formation of transmembrane pores, whose detailed structure is still unclear. Here we report the results of 5–9 μs all-atom molecular dynamics simulations starting from tetrameric transmembrane helical bundles of these two peptides, as well as their stoichiometric mixture, and the analog MG-H2 in DMPC or 3:1 DMPC/DMPG membranes. The simulations produce pore structures that appear converged, although some effect of the starting peptide arrangement (parallel vs. antiparallel) is still observed on this timescale. The peptides remain mostly helical and adopt tilted orientations. The calculated tilt angles for PGLa are in excellent agreement with recent solid state NMR experiments. The antiparallel dimer structure in the magainin 2 simulations resembles previously determined NMR and crystal structures. More transmembrane orientations and a larger and more ordered pore are seen in the 1:1 heterotetramer with an antiparallel helix arrangement. Insights into the mechanism of synergy between these two peptides are obtained via implicit solvent modeling of homo- and heterodimers and analysis of interactions in the atomistic simulations. This analysis suggests stronger pairwise interactions in the heterodimer than in the two homodimers.

References

[1]  Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53. pmid:3299384 doi: 10.1073/pnas.84.15.5449
[2]  Soravia E, Martini G, Zasloff M. Antimicrobial properties of peptides from Xenopus granular gland secretions. FEBS Lett. 1988;228(2):337–40. pmid:3125066 doi: 10.1016/0014-5793(88)80027-9
[3]  Baker M a., Maloy WL, Zasloff M, Jacob LS. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 1993;53(13):3052–7. pmid:8319212
[4]  Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–75. pmid:18078805 doi: 10.1016/j.bbamem.2007.11.008
[5]  Marion D, Zasloff M, Bax A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett. 1988;227(1):21–6. pmid:3338566 doi: 10.1016/0014-5793(88)81405-4
[6]  Bechinger B, Zasloff M, Opella SJ. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993;2(12):2077–84. pmid:8298457 doi: 10.1002/pro.5560021208
[7]  Bechinger B, Zasloff M, Opella SJ. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998;74(2 Pt 1):981–7. pmid:9533709 doi: 10.1016/s0006-3495(98)74021-4
[8]  Juretic D, Hendler RW, Kamp F, Caughey WS, Zasloff M, Westerhoff H V. Magainin Oligomers Reversibly Dissipate. DELTA.mu.H+ in Cytochrome Oxidase Liposomes. Biochemistry. 1994;33(15):4562–70. pmid:8161511 doi: 10.1021/bi00181a017
[9]  Cruciani R a, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991;88(9):3792–6. pmid:1708887 doi: 10.1073/pnas.88.9.3792
[10]  Matsuzaki K, Mitani Y, Akada KY, Murase O, Yoneyama S, Zasloff M, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998;37(43):15144–53. pmid:9790678 doi: 10.1021/bi9811617
[11]  Cruciani RA, Barker JL, Durell SR, Raghunathan G, Robert Guy H, Zasloff M, et al. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol Mol Pharmacol. 1992;226(4):287–96. pmid:1383011 doi: 10.1016/0922-4106(92)90045-w
[12]  Westerhoff H V, Jureti? D, Hendler RW, Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci U S A. 1989;86(17):6597–601. pmid:2671997 doi: 10.1073/pnas.86.17.6597
[13]  Ludtke SJ, He K, Wu Y, Huang HW. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta—Biomembr. 1994;1190(1):181–4. pmid:8110813 doi: 10.1016/0005-2736(94)90050-7
[14]  Ludtke SJ, He K, Heller WT, Harroun T a., Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35(43):13723–8. pmid:8901513 doi: 10.1021/bi9620621
[15]  Han M, Mei Y, Khant H, Ludtke SJ. Characterization of antibiotic peptide pores using cryo-EM and comparison to neutron scattering. Biophys J. 2009;97(1):164–72. doi: 10.1016/j.bpj.2009.04.039. pmid:19580754
[16]  Gregory SM, Pokorny A, Almeida PFF. Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys J. 2009;96(1):116–31. doi: 10.1016/j.bpj.2008.09.017. pmid:19134472
[17]  Tamba Y, Yamazaki M. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B. 2009;113(14):4846–52. doi: 10.1021/jp8109622. pmid:19267489
[18]  Matsuzaki K, Murase O, Miyajima K. Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry. 1995;34(39):12553–9. pmid:7548003 doi: 10.1021/bi00039a009
[19]  Andreu D, Aschauer H, Kreil G, Merrifield RB. Solid-phase synthesis of PYLa and isolation of its natural counterpart, PGLa [PYLa-(4–24)] from skin secretion of Xenopus laevis. Eur J Biochem. 1985;149(3):531–5. pmid:3839186 doi: 10.1111/j.1432-1033.1985.tb08957.x
[20]  Vaz Gomes a, de Waal a, Berden J a, Westerhoff H V. Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes. Biochemistry. 1993;32(20):5365–72. pmid:8499441 doi: 10.1021/bi00071a011
[21]  Wieprecht T, Apostolov O, Beyermann M, Seelig J. Membrane binding and pore formation of the antibacterial peptide PGLa: Thermodynamic and mechanistic aspects. Biochemistry. 2000;39(2):442–52. pmid:10631006 doi: 10.1021/bi992146k
[22]  Lohner K, Prossnigg F. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Biochim Biophys Acta—Biomembr. 2009;1788(8):1656–66. pmid:19481533 doi: 10.1016/j.bbamem.2009.05.012
[23]  Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Ulrich AS. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson. 2004;168(1):153–63. pmid:15082261 doi: 10.1016/j.jmr.2004.02.008
[24]  Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Afonin S, Strandberg E, et al. Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR. Biophys J. 2005;88(5):3392–7. pmid:15695635 doi: 10.1529/biophysj.104.056424
[25]  Williams RW, Starman R, Taylor KM, Gable K, Beeler T, Zasloff M, et al. Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry. 1990;29(18):4490–6. pmid:2350550 doi: 10.1021/bi00470a031
[26]  Westerhoff H V., Zasloff M, Rosner JL, Hendler RW, De Waal a., Vaz Gomes a, et al. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem. 1995;228(2):257–64. pmid:7705337 doi: 10.1111/j.1432-1033.1995.00257.x
[27]  Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura a, Tachi T, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry. 2001;40(41):12395–9. pmid:11591159 doi: 10.1021/bi011413v
[28]  Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. J Biol Chem. 2006;281(43):32089–94. pmid:16877761 doi: 10.1074/jbc.m604759200
[29]  Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: Structural insights into the synergistic enhancement of the antimicrobial activities of pgla and magainin 2. Biophys J. 2011;100(6):1473–80. doi: 10.1016/j.bpj.2011.01.070. pmid:21402029
[30]  Strandberg E, Zerweck J, Wadhwani P, Ulrich AS. Synergistic insertion of antimicrobial magainin-Family peptides in membranes depends on the lipid spontaneous curvature. Biophys J. 2013;104(6):L9–11. doi: 10.1016/j.bpj.2013.01.047. pmid:23528099
[31]  Leontiadou H, Mark AE, Marrink SJ. Antimicrobial peptides in action. J Am Chem Soc. 2006;128(9):12156–61. pmid:16967965 doi: 10.1021/ja062927q
[32]  Tachi T, Epand RF, Epand RM, Matsuzaki K. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry. 2002;41(34):10723–31. pmid:12186559 doi: 10.1021/bi0256983
[33]  Rzepiela AJ, Sengupta D, Goga N, Marrink SJ. Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions. Faraday Discuss. 2010;144:431–43. pmid:20158042 doi: 10.1039/b901615e
[34]  Mihajlovic M, Lazaridis T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim Biophys Acta—Biomembr. 2012;1818(5):1274–83. pmid:22290189 doi: 10.1016/j.bbamem.2012.01.016
[35]  Woo H-J, Wallqvist A. Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study. J Phys Chem B. 2011;115(25):8122–9. doi: 10.1021/jp2023023. pmid:21651300
[36]  Santo KP, Berkowitz ML. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: results from coarse-grained simulations. J Phys Chem B. 2012;116(9):3021–30. doi: 10.1021/jp212018f. pmid:22303892
[37]  Han E, Lee H. Synergistic effects of magainin 2 and PGLa on their heterodimer formation, aggregation, and insertion into the bilayer. RSC Adv. 2015;5(3):2047–55. doi: 10.1039/c4ra08480b
[38]  Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Dimer structure of magainin 2 bound to phospholipid vesicles. Biopolymers. 2002;64(6):314–27. pmid:12124849 doi: 10.1002/bip.10198
[39]  Hayouka Z, Mortenson DE, Kreitler DF, Weisblum B, Forest KT, Gellman SH. Evidence for phenylalanine zipper-mediated dimerization in the X-ray crystal structure of a magainin 2 analogue. J Am Chem Soc. 2013;135(42):15738–41. doi: 10.1021/ja409082w. pmid:24102563
[40]  Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. 1994;33(11):3342–9. pmid:8136371 doi: 10.1021/bi00177a027
[41]  Tamba Y, Ariyama H, Levadny V, Yamazaki M. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B. 2010;114(37):12018–26. doi: 10.1021/jp104527y. pmid:20799752
[42]  Imura Y, Choda N, Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J. 2008;95(12):5757–65. doi: 10.1529/biophysj.108.133488. pmid:18835901
[43]  Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 2001;81(3):1475–85. pmid:11509361 doi: 10.1016/s0006-3495(01)75802-x
[44]  Leveritt JM, Pino-Angeles A, Lazaridis T. The Structure of a Melittin-Stabilized Pore. Biophys J. 2015;108(10):2424–6. doi: 10.1016/j.bpj.2015.04.006. pmid:25992720
[45]  Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL, et al. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry. 1997;36(20):6124–32. pmid:9166783 doi: 10.1021/bi9619987
[46]  Wieprecht T, Apostolov O, Beyermann M, Seelig J. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol. 1999;294(3):785–94. pmid:10610796 doi: 10.1006/jmbi.1999.3268
[47]  Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Biochim Biophys Acta. 2015;1848(9):1944–54 doi: 10.1016/j.bbamem.2015.02.019. pmid:25726906
[48]  Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS. Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochim Biophys Acta—Biomembr. 2006;1758(9):1330–42. pmid:16716250 doi: 10.1016/j.bbamem.2006.02.029
[49]  Ulmschneider JP, Smith JC, Ulmschneider MB, Ulrich AS, Strandberg E. Reorientation and dimerization of the membrane-bound antimicrobial peptide pgla from microsecond all-atom MD simulations. Biophys J. 2012;103(3):472–82. doi: 10.1016/j.bpj.2012.06.040. pmid:22947863
[50]  Jo E, Blazyk J, Boggs JM. Insertion of Magainin into the Lipid Bilayer Detected Using Lipid Photolabels Insertion of Magainin into the Lipid Bilayer Detected Using Lipid Photolabels ?. Biochemistry. 1998;37(39):13791–9. pmid:9753468 doi: 10.1021/bi980855c
[51]  Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802. pmid:16222654 doi: 10.1002/jcc.20289
[52]  Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135–45. doi: 10.1002/jcc.23354. pmid:23832629
[53]  Shan Y, Klepeis JL, Eastwood MP, Dror RO, Shaw DE. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J Chem Phys. 2005;122(5):54101. pmid:15740304 doi: 10.1063/1.1839571
[54]  Lippert RA, Predescu C, Ierardi DJ, Mackenzie KM, Eastwood MP, Dror RO, et al. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J Chem Phys. 2013;139(16):164106. doi: 10.1063/1.4825247. pmid:24182003
[55]  Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33–8. pmid:8744570 doi: 10.1016/0263-7855(96)00018-5
[56]  Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614. doi: 10.1002/jcc.21287. pmid:19444816
[57]  Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013;9(7):3084–95. doi: 10.1021/ct400341p. pmid:26583988

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133