全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis

DOI: 10.1371/journal.ppat.1005351

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics.

References

[1]  WHO. Global Tuberculosis Report 2013. 2013;: 1–3.
[2]  Esmail H, Barry CE III, Wilkinson RJ. Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discovery Today. 2012;17: 514–521. doi: 10.1016/j.drudis.2011.12.013. pmid:22198298
[3]  Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism. Ramakrishnan L, editor. PLoS Pathog. 2011;7: e1002251. doi: 10.1371/journal.ppat.1002251. pmid:21980284
[4]  Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature. NIH Public Access; 2013;499: 178–183. doi: 10.1038/nature12337. pmid:23823726
[5]  Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA. 2003;100: 12989–12994. pmid:14569030 doi: 10.1073/pnas.2134250100
[6]  Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, et al. Global Assessment of Genomic Regions Required for Growth in Mycobacterium tuberculosis. Behr MA, editor. PLoS Pathog. 2012;8: e1002946. doi: 10.1371/journal.ppat.1002946. pmid:23028335
[7]  Drage MG, Tsai H-C, Pecora ND, Cheng T-Y, Arida AR, Shukla S, et al. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol. 2010;17: 1088–1095. doi: 10.1038/nsmb.1869. pmid:20694006
[8]  Shukla S, Richardson ET, Athman JJ, Shi L, Wearsch PA, McDonald D, et al. Mycobacterium tuberculosis Lipoprotein LprG Binds Lipoarabinomannan and Determines Its Cell Envelope Localization to Control Phagolysosomal Fusion. Lewinsohn DM, editor. PLoS Pathog. 2014;10: e1004471. doi: 10.1371/journal.ppat.1004471. pmid:25356793
[9]  Gaur RL, Ren K, Blumenthal A, Bhamidi S, Gibbs S, Jackson M, et al. LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of Mycobacterium tuberculosis. Behr MA, editor. PLoS Pathog. 2014;10: e1004376. doi: 10.1371/journal.ppat.1004376. pmid:25232742
[10]  Silva PE, Bigi F, Santangelo MP, Romano MI, Martín C, Cataldi A, et al. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2001;45: 800–804. pmid:11181364 doi: 10.1128/aac.45.3.800-804.2001
[11]  Ramón-García S, Martín C, Thompson CJ, Aínsa JA. Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother. 2009;53: 3675–3682. doi: 10.1128/AAC.00550-09. pmid:19564371
[12]  Farrow MF, Rubin EJ. Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J Bacteriol. 2008;190: 1783–1791. pmid:18156250 doi: 10.1128/jb.01046-07
[13]  Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G, Roig-Zamboni V, et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 2006;25: 1436–1444. pmid:16541102 doi: 10.1038/sj.emboj.7601048
[14]  Cox JS, Chen B, McNeil M, Jacobs WR. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature. 1999;402: 79–83. pmid:10573420
[15]  H?lscher C, Reiling N, Schaible UE, H?lscher A, Bathmann C, Korbel D, et al. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol. 2008;38: 680–694. doi: 10.1002/eji.200736458. pmid:18266299
[16]  Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest. 2004;114: 1790–1799. pmid:15599404 doi: 10.1172/jci21027
[17]  Sugawara I, Yamada H, Mizuno S, Takeda K, Akira S. Mycobacterial infection in MyD88-deficient mice. Microbiol Immunol. 2003;47: 841–847. pmid:14638995 doi: 10.1111/j.1348-0421.2003.tb03450.x
[18]  Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci USA. 2014;111: 4958–4963. doi: 10.1073/pnas.1403078111. pmid:24639491
[19]  Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem. 2006;281: 3866–3875. pmid:16354661 doi: 10.1074/jbc.m505556200
[20]  Low KL, Rao PSS, Shui G, Bendt AK, Pethe K, Dick T, et al. Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin. J Bacteriol. 2009;191: 5037–5043. doi: 10.1128/JB.00530-09. pmid:19525349
[21]  Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, et al. A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis. Chem Biol. Elsevier Ltd; 2011;18: 1537–1549. doi: 10.1016/j.chembiol.2011.10.013. pmid:22195556
[22]  Madigan CA, Martinot AJ, Wei J-R, Madduri A, Cheng T-Y, Young DC, et al. Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis. PLoS Pathog. 2015;11: e1004792. doi: 10.1371/journal.ppat.1004792. pmid:25815898
[23]  Madigan CA, Cheng T-Y, Layre E, Young DC, McConnell MJ, Debono CA, et al. Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2012;109: 1257–1262. doi: 10.1073/pnas.1109958109. pmid:22232695
[24]  Bianco MV, Blanco FC, Imperiale B, Forrellad MA, Rocha RV, Klepp LI, et al. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC infectious diseases. 2011;11: 195. doi: 10.1186/1471-2334-11-195. pmid:21762531
[25]  Daffé M, Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998;39: 131–203. pmid:9328647 doi: 10.1016/s0065-2911(08)60016-8
[26]  Ortalo-Magné A, Lemassu A, Laneelle MA, Bardou F, Silve G, Gounon P, et al. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol. 1996;178: 456–461. pmid:8550466
[27]  Athar H. A simple, rapid, and sensitive fluorescence assay for microsomal triglyceride transfer protein. J Lipid Res. 2004;45: 764–772. pmid:14754905 doi: 10.1194/jlr.d300026-jlr200
[28]  Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol. 2004;173: 2660–2668. pmid:15294983 doi: 10.4049/jimmunol.173.4.2660
[29]  Bigi F, Gioffré A, Klepp L, Santangelo M de LP, Alito A, Caimi K, et al. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect. 2004;6: 182–187. pmid:14998516 doi: 10.1016/j.micinf.2003.10.010
[30]  Hernandez-Pando R, Sch?n T, Orozco EH, Serafin J, Estrada-García I. Expression of inducible nitric oxide synthase and nitrotyrosine during the evolution of experimental pulmonary tuberculosis. Exp Toxicol Pathol. 2001;53: 257–265. pmid:11665849 doi: 10.1078/0940-2993-00182
[31]  MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94: 5243–5248. pmid:9144222 doi: 10.1073/pnas.94.10.5243
[32]  Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun. 2001;69: 7711–7717. pmid:11705952 doi: 10.1128/iai.69.12.7711-7717.2001
[33]  Yang C-S, Shin D-M, Kim K-H, Lee Z-W, Lee C-H, Park SG, et al. NADPH Oxidase 2 Interaction with TLR2 Is Required for Efficient Innate Immune Responses to Mycobacteria via Cathelicidin Expression. The Journal of Immunology. 2009;182: 3696–3705. doi: 10.4049/jimmunol.0802217. pmid:19265148
[34]  Jackson SH, Gallin JI, Holland SM. The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med. 1995;182: 751–758. pmid:7650482 doi: 10.1084/jem.182.3.751
[35]  Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993;178: 2243–2247. pmid:8245795 doi: 10.1084/jem.178.6.2243
[36]  Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178: 2249–2254. pmid:7504064 doi: 10.1084/jem.178.6.2249
[37]  Smith NLD, Denning DW. Clinical implications of interferon- γ genetic and epigenetic variants. Immunology. 2014;143: 499–511. doi: 10.1111/imm.12362. pmid:25052001
[38]  Richardson ET, Shukla S, Sweet DR, Wearsch PA, Tsichlis PN, Boom WH, et al. TLR2-dependent ERK signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015. doi: 10.1128/iai.00135-15
[39]  Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA. 2008;105: 4376–4380. doi: 10.1073/pnas.0711159105. pmid:18334639
[40]  Eoh H, Rhee KY. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA. 2014;111: 4976–4981. doi: 10.1073/pnas.1400390111. pmid:24639517
[41]  Yang X, Nesbitt NM, Dubnau E, Smith I, Sampson NS. Cholesterol Metabolism Increases the Metabolic Pool of Propionate in Mycobacterium tuberculosis. Biochemistry. 2009;48: 3819–3821. doi: 10.1021/bi9005418. pmid:19364125
[42]  Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, et al. Induction of a Novel Class of Diacylglycerol Acyltransferases and Triacylglycerol Accumulation in Mycobacterium tuberculosis as It Goes into a Dormancy-Like State in Culture. J Bacteriol. 2004;186: 5017–5030. pmid:15262939 doi: 10.1128/jb.186.15.5017-5030.2004
[43]  Singh G, Singh G, Jadeja D, Kaur J. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit Rev Microbiol. 2010;36: 259–269. doi: 10.3109/1040841X.2010.482923. pmid:20500016
[44]  Deb C, Lee C- M, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, et al. A Novel In Vitro Multiple-Stress Dormancy Model for Mycobacterium tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen. Ahmed N, editor. PLoS ONE. 2009;4: e6077. doi: 10.1371/journal.pone.0006077. pmid:19562030
[45]  Wheeler PR, Bulmer K, Ratledge C. Fatty acid oxidation and the beta-oxidation complex in Mycobacterium leprae and two axenically cultivable mycobacteria that are pathogens. J Gen Microbiol. 1991;137: 885–893. pmid:1856682 doi: 10.1099/00221287-137-4-885
[46]  Lee W, VanderVen BC, Fahey RJ, Russell DG. Intracellular Mycobacterium tuberculosis Exploits Host-derived Fatty Acids to Limit Metabolic Stress. Journal of Biological Chemistry. 2013;288: 6788–6800. doi: 10.1074/jbc.M112.445056. pmid:23306194
[47]  VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, et al. Novel Inhibitors of Cholesterol Degradation in Mycobacterium tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment. PLoS Pathog. 2015;11: e1004679. doi: 10.1371/journal.ppat.1004679. pmid:25675247
[48]  Mondino S, Gago G, Gramajo H. Transcriptional regulation of fatty acid biosynthesis in mycobacteria. Mol Microbiol. 2013;89: 372–387. doi: 10.1111/mmi.12282. pmid:23721164
[49]  Shleeva M, Goncharenko A, Kudykina Y, Young D, Young M, Kaprelyants A. Cyclic amp-dependent resuscitation of dormant mycobacteria by exogenous free Fatty acids. PLoS ONE. 2013;8: e82914–e82914. doi: 10.1371/journal.pone.0082914. pmid:24376605
[50]  Nickel J, Irzik K, Van Ooyen J, Eggeling L. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol Microbiol. 2010;78: 253–265. doi: 10.1111/j.1365-2958.2010.07337.x. pmid:20923423
[51]  Masiewicz P, Wolański M, Brzostek A, Dziadek J, Zakrzewska-Czerwińska J. Propionate represses the dnaA gene via the methylcitrate pathway-regulating transcription factor, PrpR, in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek. 2014;105: 951–959. doi: 10.1007/s10482-014-0153-0. pmid:24705740
[52]  Daniel J, Sirakova T, Kolattukudy P. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. PLoS ONE. 2014;9: e114877. doi: 10.1371/journal.pone.0114877. pmid:25490545
[53]  Alvarez H, Steinbüchel A. Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology. 2002;60: 367–376. pmid:12466875 doi: 10.1007/s00253-002-1135-0
[54]  Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie. 2015. doi: 10.1016/j.biochi.2015.08.016
[55]  Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR. Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology (Reading, Engl). 2002;148: 2951–2958. doi: 10.1099/00221287-148-10-2951
[56]  Black PN, DiRusso CC. Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim Biophys Acta. 1994;1210: 123–145. pmid:8280762 doi: 10.1016/0005-2760(94)90113-9
[57]  Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, et al. Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response. Bishai W, editor. PLoS Pathog. 2009;5: e1000545. doi: 10.1371/journal.ppat.1000545. pmid:19680450
[58]  Ramón-García S, Stewart GR, Hui ZK, Mohn WW, Thompson CJ. The mycobacterial P55 efflux pump is required for optimal growth on cholesterol. Virulence. 2015;6: 444–448. doi: 10.1080/21505594.2015.1044195. pmid:26155739
[59]  Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011;7: e1002093. doi: 10.1371/journal.ppat.1002093. pmid:21731490
[60]  Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Mol Microbiol. 2007;66: 829–839. pmid:17919287 doi: 10.1111/j.1365-2958.2007.05947.x
[61]  Irzik K, Van Ooyen J, Gatgens J, Krumbach K, Bott M, Eggeling L. Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum. J Biotechnol. 2014;192PA: 96–101. doi: 10.1016/j.jbiotec.2014.10.031
[62]  Yousuf S, Angara R, Vindal V, Ranjan A. Rv0494 is a starvation-inducible, auto-regulatory FadR-like regulator from Mycobacterium tuberculosis. Microbiology. 2015;161: 463–476. doi: 10.1099/mic.0.000017. pmid:25527627
[63]  Delmar JA, Chou T-H, Wright CC, Licon MH, Doh JK, Radhakrishnan A, et al. Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. Journal of Biological Chemistry. 2015. doi: 10.1074/jbc.m115.683797
[64]  de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY. Metabolomics of Mycobacterium tuberculosis Reveals Compartmentalized Co-Catabolism of Carbon Substrates. Chem Biol. Elsevier Ltd; 2010;17: 1122–1131. doi: 10.1016/j.chembiol.2010.08.009
[65]  Garton NJ, Waddell SJ, Sherratt AL, Lee S-M, Smith RJ, Senner C, et al. Cytological and Transcript Analyses Reveal Fat and Lazy Persister-Like Bacilli in Tuberculous Sputum. PLoS Med. 2008;5: e75. doi: 10.1371/journal.pmed.0050075. pmid:18384229

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133