全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4

DOI: 10.1371/journal.ppat.1005366

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis.

References

[1]  Haedicke J, Iftner T (2013) Human papillomaviruses and cancer. Radiother Oncol 108: 397–402. doi: 10.1016/j.radonc.2013.06.004. pmid:23830197
[2]  Jeckel S, Huber E, Stubenrauch F, Iftner T (2002) A transactivator function of cottontail rabbit papillomavirus e2 is essential for tumor induction in rabbits. J Virol 76: 11209–11215. pmid:12388680 doi: 10.1128/jvi.76.22.11209-11215.2002
[3]  Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282: 13141–13145. pmid:17329240 doi: 10.1074/jbc.r700001200
[4]  Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12: 465–477. doi: 10.1038/nrc3256. pmid:22722403
[5]  McBride AA (2013) The papillomavirus E2 proteins. Virology 445: 57–79. doi: 10.1016/j.virol.2013.06.006. pmid:23849793
[6]  McBride AA, Jang MK (2013) Current understanding of the role of the Brd4 protein in the papillomavirus lifecycle. Viruses 5: 1374–1394. doi: 10.3390/v5061374. pmid:23722886
[7]  Gagnon D, Joubert S, Senechal H, Fradet-Turcotte A, Torre S, et al. (2009) Proteasomal degradation of the papillomavirus E2 protein is inhibited by overexpression of bromodomain-containing protein 4. J Virol 83: 4127–4139. doi: 10.1128/JVI.02468-08. pmid:19211738
[8]  Lee AY, Chiang CM (2009) Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability. J Biol Chem 284: 2778–2786. doi: 10.1074/jbc.M805835200. pmid:19038968
[9]  Zheng G, Schweiger MR, Martinez-Noel G, Zheng L, Smith JA, et al. (2009) Brd4 regulation of papillomavirus protein E2 stability. J Virol 83: 8683–8692. doi: 10.1128/JVI.00674-09. pmid:19553317
[10]  Yan J, Li Q, Lievens S, Tavernier J, You J (2010) Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J Virol 84: 76–87. doi: 10.1128/JVI.01647-09. pmid:19846528
[11]  Fujii T, Brandsma JL, Peng X, Srimatkandada S, Li L, et al. (2001) High and low levels of cottontail rabbit papillomavirus E2 protein generate opposite effects on gene expression. J Biol Chem 276: 867–874. pmid:11013251 doi: 10.1074/jbc.m007120200
[12]  Stubenrauch F, Pfister H (1994) Low-affinity E2-binding site mediates downmodulation of E2 transactivation of the human papillomavirus type 8 late promoter. J Virol 68: 6959–6966. pmid:7933077
[13]  Behren A, Simon C, Schwab RM, Loetzsch E, Brodbeck S, et al. (2005) Papillomavirus E2 protein induces expression of the matrix metalloproteinase-9 via the extracellular signal-regulated kinase/activator protein-1 signaling pathway. Cancer Res 65: 11613–11621. pmid:16357172 doi: 10.1158/0008-5472.can-05-2672
[14]  Chan WK, Chong T, Bernard HU, Klock G (1990) Transcription of the transforming genes of the oncogenic human papillomavirus-16 is stimulated by tumor promotors through AP1 binding sites. Nucleic Acids Res 18: 763–769. pmid:2156229 doi: 10.1093/nar/18.4.763
[15]  Thierry F, Spyrou G, Yaniv M, Howley P (1992) Two AP1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. J Virol 66: 3740–3748. pmid:1316480
[16]  Wang WM, Wu SY, Lee AY, Chiang CM (2011) Binding site specificity and factor redundancy in activator protein-1-driven human papillomavirus chromatin-dependent transcription. J Biol Chem 286: 40974–40986. doi: 10.1074/jbc.M111.290874. pmid:21937452
[17]  de Wilde J, De-Castro Arce J, Snijders PJ, Meijer CJ, Rosl F, et al. (2008) Alterations in AP-1 and AP-1 regulatory genes during HPV-induced carcinogenesis. Cell Oncol 30: 77–87. pmid:18219112 doi: 10.1007/s13402-011-0062-4
[18]  Soto U, Das BC, Lengert M, Finzer P, zur Hausen H, et al. (1999) Conversion of HPV 18 positive non-tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-alpha mediated repression of viral transcription and modification of the AP-1 transcription complex. Oncogene 18: 3187–3198. pmid:10359524 doi: 10.1038/sj.onc.1202765
[19]  Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, et al. (1995) c-fos is required for malignant progression of skin tumors. Cell 82: 721–732. pmid:7545543 doi: 10.1016/0092-8674(95)90469-7
[20]  Guinea-Viniegra J, Zenz R, Scheuch H, Jimenez M, Bakiri L, et al. (2012) Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17. J Clin Invest 122: 2898–2910. doi: 10.1172/JCI63103. pmid:22772468
[21]  Schweiger MR, You J, Howley PM (2006) Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 80: 4276–4285. pmid:16611886 doi: 10.1128/jvi.80.9.4276-4285.2006
[22]  You J, Croyle JL, Nishimura A, Ozato K, Howley PM (2004) Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117: 349–360. pmid:15109495 doi: 10.1016/s0092-8674(04)00402-7
[23]  Abbate EA, Voitenleitner C, Botchan MR (2006) Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell 24: 877–889. pmid:17189190 doi: 10.1016/j.molcel.2006.11.002
[24]  Gallagher E, Enzler T, Matsuzawa A, Anzelon-Mills A, Otero D, et al. (2007) Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol 8: 57–63. pmid:17143273 doi: 10.1038/ni1421
[25]  Leiprecht N, Notz E, Schuetz J, Haedicke J, Stubenrauch F, et al. (2014) A novel recombinant papillomavirus genome enabling in vivo RNA interference reveals that YB-1, which interacts with the viral regulatory protein E2, is required for CRPV-induced tumor formation in vivo. Am J Cancer Res 4: 222–233. pmid:24959377
[26]  Jeckel S, Loetzsch E, Huber E, Stubenrauch F, Iftner T (2003) Identification of the E9/E2C cDNA and functional characterization of the gene product reveal a new repressor of transcription and replication in cottontail rabbit papillomavirus. J Virol 77: 8736–8744. pmid:12885893 doi: 10.1128/jvi.77.16.8736-8744.2003
[27]  Huber E, Vlasny D, Jeckel S, Stubenrauch F, Iftner T (2004) Gene profiling of cottontail rabbit papillomavirus-induced carcinomas identifies upregulated genes directly Involved in stroma invasion as shown by small interfering RNA-mediated gene silencing. J Virol 78: 7478–7489. pmid:15220421 doi: 10.1128/jvi.78.14.7478-7489.2004
[28]  Bornkamm GW, Berens C, Kuklik-Roos C, Bechet JM, Laux G, et al. (2005) Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33: e137. pmid:16147984 doi: 10.1093/nar/gni137
[29]  Schenker A, Straub E, Iftner T, Stubenrauch F (2013) Cell-type-dependent activities of regulatory regions and E2 proteins derived from carcinogenic and non-carcinogenic human alphapapillomaviruses. J Gen Virol 94: 1343–1350. doi: 10.1099/vir.0.049072-0. pmid:23407419
[30]  Angel P, Szabowski A, Schorpp-Kistner M (2001) Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20: 2413–2423. pmid:11402337 doi: 10.1038/sj.onc.1204380
[31]  Probst S, Notz E, Wolff M, Buehlmann J, Stubenrauch F, et al. (2013) A recombinant cottontail rabbit papillomavirus genome for ectopic expression of genes in cells infected with virus in vivo. J Virol Methods 187: 110–113. doi: 10.1016/j.jviromet.2012.09.008. pmid:23018059
[32]  Gonzales M, Bowden GT (2002) Ultraviolet B (UVB) induction of the c-fos promoter is mediated by phospho-cAMP response element binding protein (CREB) binding to CRE and c-fos activator protein 1 site (FAP1) cis elements. Gene 293: 169–179. pmid:12137955 doi: 10.1016/s0378-1119(02)00723-0
[33]  Wang Y, Prywes R (2000) Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene 19: 1379–1385. pmid:10723128 doi: 10.1038/sj.onc.1203443
[34]  Senechal H, Poirier GG, Coulombe B, Laimins LA, Archambault J (2007) Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 358: 10–17. pmid:17023018 doi: 10.1016/j.virol.2006.08.035
[35]  Ushikai M, Lace MJ, Yamakawa Y, Kono M, Anson J, et al. (1994) trans activation by the full-length E2 proteins of human papillomavirus type 16 and bovine papillomavirus type 1 in vitro and in vivo: cooperation with activation domains of cellular transcription factors. J Virol 68: 6655–6666. pmid:8083999
[36]  Butz K, Hoppe-Seyler F (1993) Transcriptional control of human papillomavirus (HPV) oncogene expression: composition of the HPV type 18 upstream regulatory region. J Virol 67: 6476–6486. pmid:8411351
[37]  Kyo S, Tam A, Laimins LA (1995) Transcriptional activity of human papillomavirus type 31b enhancer is regulated through synergistic interaction of AP1 with two novel cellular factors. Virology 211: 184–197. pmid:7645210 doi: 10.1006/viro.1995.1390
[38]  Offord EA, Chappuis PO, Beard P (1993) Different stability of AP1 proteins in human keratinocyte and fibroblast cells: possible role in the cell-type specific expression of human papillomavirus type 18 genes. Carcinogenesis 14: 2447–2455. pmid:8269611 doi: 10.1093/carcin/14.12.2447
[39]  Christiansen IK, Sandve GK, Schmitz M, Durst M, Hovig E (2015) Transcriptionally active regions are the preferred targets for chromosomal HPV integration in cervical carcinogenesis. PLoS One 10: e0119566. doi: 10.1371/journal.pone.0119566. pmid:25793388
[40]  Boulet GA, Benoy IH, Depuydt CE, Horvath CA, Aerts M, et al. (2009) Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: biomarkers for cervical intraepithelial neoplasia >or = 2 in a liquid-based cytology setting? Cancer Epidemiol Biomarkers Prev 18: 2992–2999. doi: 10.1158/1055-9965.EPI-09-0025. pmid:19861526
[41]  Kulmala SM, Syrjanen SM, Gyllensten UB, Shabalova IP, Petrovichev N, et al. (2006) Early integration of high copy HPV16 detectable in women with normal and low grade cervical cytology and histology. J Clin Pathol 59: 513–517. pmid:16484445 doi: 10.1136/jcp.2004.024570
[42]  Bechtold V, Beard P, Raj K (2003) Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol 77: 2021–2028. pmid:12525636 doi: 10.1128/jvi.77.3.2021-2028.2003
[43]  Schmidt MT, Olejnik AK, Gozdzicka-Jozefiak A (2005) The HPV16 E2 transcriptional regulator mode of action depends on the physical state of the viral genome. Acta Biochim Pol 52: 823–832. pmid:16273126
[44]  Stubenrauch F, Zobel T, Iftner T (2001) The E8 domain confers a novel long-distance transcriptional repression activity on the E8E2C protein of high-risk human papillomavirus type 31. J Virol 75: 4139–4149. pmid:11287563 doi: 10.1128/jvi.75.9.4139-4149.2001
[45]  Steger G, Corbach S (1997) Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol 71: 50–58. pmid:8985322
[46]  Pfefferle R, Marcuzzi GP, Akgul B, Kasper HU, Schulze F, et al. (2008) The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice. J Invest Dermatol 128: 2310–2315. doi: 10.1038/jid.2008.73. pmid:18401427
[47]  Hussain S, Bharti AC, Salam I, Bhat MA, Mir MM, et al. (2009) Transcription factor AP-1 in esophageal squamous cell carcinoma: alterations in activity and expression during human Papillomavirus infection. BMC Cancer 9: 329. doi: 10.1186/1471-2407-9-329. pmid:19758438
[48]  Prusty BK, Das BC (2005) Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 113: 951–960. pmid:15514944 doi: 10.1002/ijc.20668
[49]  Jang MK, Kwon D, McBride AA (2009) Papillomavirus E2 proteins and the host BRD4 protein associate with transcriptionally active cellular chromatin. J Virol 83: 2592–2600. doi: 10.1128/JVI.02275-08. pmid:19129460
[50]  Vosa L, Sudakov A, Remm M, Ustav M, Kurg R (2012) Identification and analysis of papillomavirus E2 protein binding sites in the human genome. J Virol 86: 348–357. doi: 10.1128/JVI.05606-11. pmid:22031941
[51]  Lamonica JM, Deng W, Kadauke S, Campbell AE, Gamsjaeger R, et al. (2011) Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc Natl Acad Sci U S A 108: E159–168. doi: 10.1073/pnas.1102140108. pmid:21536911
[52]  Grant C, Jain P, Nonnemacher M, Flaig KE, Irish B, et al. (2006) AP-1-directed human T cell leukemia virus type 1 viral gene expression during monocytic differentiation. J Leukoc Biol 80: 640–650. pmid:16829632 doi: 10.1189/jlb.1205723
[53]  Sadowska B, Barrucco R, Khalili K, Safak M (2003) Regulation of human polyomavirus JC virus gene transcription by AP-1 in glial cells. J Virol 77: 665–672. pmid:12477869 doi: 10.1128/jvi.77.1.665-672.2003
[54]  Sharma-Walia N, Krishnan HH, Naranatt PP, Zeng L, Smith MS, et al. (2005) ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol 79: 10308–10329. pmid:16051824 doi: 10.1128/jvi.79.16.10308-10329.2005
[55]  de Magalhaes JC, Andrade AA, Silva PN, Sousa LP, Ropert C, et al. (2001) A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276: 38353–38360. pmid:11459835 doi: 10.1074/jbc.m100183200
[56]  Iwai K, Mori N, Oie M, Yamamoto N, Fujii M (2001) Human T-cell leukemia virus type 1 tax protein activates transcription through AP-1 site by inducing DNA binding activity in T cells. Virology 279: 38–46. pmid:11145887 doi: 10.1006/viro.2000.0669
[57]  Lares AP, Tu CC, Spencer JV (2013) The human cytomegalovirus US27 gene product enhances cell proliferation and alters cellular gene expression. Virus Res 176: 312–320. doi: 10.1016/j.virusres.2013.07.002. pmid:23850869
[58]  Lan YY, Hsiao JR, Chang KC, Chang JS, Chen CW, et al. (2012) Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol 86: 6656–6667. doi: 10.1128/JVI.00174-12. pmid:22514348
[59]  Tacon CE, Newton R, Proud D, Leigh R (2012) Rhinovirus-induced MMP-9 expression is dependent on Fra-1, which is modulated by formoterol and dexamethasone. J Immunol 188: 4621–4630. doi: 10.4049/jimmunol.1101666. pmid:22461694
[60]  Yang CM, Lin CC, Lee IT, Lin YH, Yang CM, et al. (2012) Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation 9: 12. doi: 10.1186/1742-2094-9-12. pmid:22251375
[61]  French CA (2012) Pathogenesis of NUT midline carcinoma. Annu Rev Pathol 7: 247–265. doi: 10.1146/annurev-pathol-011811-132438. pmid:22017582
[62]  Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM (2013) Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell 49: 843–857. doi: 10.1016/j.molcel.2012.12.006. pmid:23317504
[63]  Shi J, Cao J, Zhou BP (2014) Twist-BRD4 Complex: Potential Drug Target for Basal-like Breast Cancer. Curr Pharm Des. doi: 10.2174/1381612821666141211153853
[64]  Wu X, Qi J, Bradner JE, Xiao G, Chen LF (2013) Bromodomain and extraterminal (BET) protein inhibition suppresses human T cell leukemia virus 1 (HTLV-1) Tax protein-mediated tumorigenesis by inhibiting nuclear factor kappaB (NF-kappaB) signaling. J Biol Chem 288: 36094–36105. doi: 10.1074/jbc.M113.485029. pmid:24189064
[65]  Wang X, Li J, Schowalter RM, Jiao J, Buck CB, et al. (2012) Bromodomain protein Brd4 plays a key role in Merkel cell polyomavirus DNA replication. PLoS Pathog 8: e1003021. doi: 10.1371/journal.ppat.1003021. pmid:23144621
[66]  Palermo RD, Webb HM, West MJ (2011) RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 7: e1002334. doi: 10.1371/journal.ppat.1002334. pmid:22046134
[67]  Nguyen CL, McLaughlin-Drubin ME, Munger K (2008) Delocalization of the microtubule motor Dynein from mitotic spindles by the human papillomavirus E7 oncoprotein is not sufficient for induction of multipolar mitoses. Cancer Res 68: 8715–8722. doi: 10.1158/0008-5472.CAN-08-1303. pmid:18974113
[68]  Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, et al. (2010) Selective inhibition of BET bromodomains. Nature 468: 1067–1073. doi: 10.1038/nature09504. pmid:20871596
[69]  Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, et al. (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468: 1119–1123. doi: 10.1038/nature09589. pmid:21068722
[70]  Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, et al. (2010) Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 107: 12617–12622. doi: 10.1073/pnas.1006774107. pmid:20616024
[71]  Cohen DN, Lawson SK, Shaver AC, Du L, Nguyen HP, et al. (2015) Contribution of Beta-HPV Infection and UV Damage to Rapid-Onset Cutaneous Squamous Cell Carcinoma during BRAF-Inhibition Therapy. Clin Cancer Res. doi: 10.1158/1078-0432.ccr-14-2667
[72]  Wu SY, Lee AY, Hou SY, Kemper JK, Erdjument-Bromage H, et al. (2006) Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 20: 2383–2396. pmid:16921027 doi: 10.1101/gad.1448206

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133