[1] | Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532. pmid:16679166 doi: 10.1016/s0140-6736(06)68653-4
|
[2] | Schar F, Trostdorf U, Giardina F, Khieu V, Muth S, et al. (2013) Strongyloides stercoralis: Global Distribution and Risk Factors. PLoS Negl Trop Dis 7: e2288. doi: 10.1371/journal.pntd.0002288. pmid:23875033
|
[3] | Schad GA (1989) Morphology and life history of Strongyloides stercoralis. In: Grove DI, editor. Strongyloidiasis a major roundworm infection of man. London: Taylor and Francis. pp. 85–104.
|
[4] | Igra-Siegman Y, Kapila R, Sen P, Kaminski ZC, Louria DB (1981) Syndrome of hyperinfection with Strongyloides stercoralis. Rev Infect Dis 3: 397–407. pmid:7025145 doi: 10.1093/clinids/3.3.397
|
[5] | Toledo R, Munoz-Antoli C, Esteban JG (2015) Strongyloidiasis with emphasis on human infections and its different clinical forms. Adv Parasitol 88: 165–241. doi: 10.1016/bs.apar.2015.02.005. pmid:25911368
|
[6] | Viney ME, Lok JB (2007) Strongyloides spp. WormBook: 1–15. doi: 10.1895/wormbook.1.141.1
|
[7] | Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46: 326–342. pmid:1183723 doi: 10.1016/0012-1606(75)90109-8
|
[8] | Hu PJ (2007) Dauer. WormBook: 1–19. doi: 10.1895/wormbook.1.144.1
|
[9] | Golden JW, Riddle DL (1984) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 102: 368–378. pmid:6706004 doi: 10.1016/0012-1606(84)90201-x
|
[10] | Crook M, Thompson FJ, Grant WN, Viney ME (2005) daf-7 and the development of Strongyloides ratti and Parastrongyloides trichosuri. Mol Biochem Parasitol 139: 213–223. pmid:15664656 doi: 10.1016/j.molbiopara.2004.11.010
|
[11] | Hammond MP, Robinson RD (1994) Chromosome complement, gametogenesis, and development of Strongyloides stercoralis. J Parasitol 80: 689–695. pmid:7931903 doi: 10.2307/3283247
|
[12] | Albert PS, Riddle DL (1988) Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol 126: 270–293. pmid:3350212 doi: 10.1016/0012-1606(88)90138-8
|
[13] | Hotez P, Hawdon J, Schad GA (1993) Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. Parasitol Today 9: 23–26. pmid:15463660 doi: 10.1016/0169-4758(93)90159-d
|
[14] | Crook M (2014) The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol 44: 1–8. doi: 10.1016/j.ijpara.2013.08.004. pmid:24095839
|
[15] | Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22: 2149–2165. doi: 10.1101/gad.1701508. pmid:18708575
|
[16] | Massey HC Jr., Bhopale MK, Li X, Castelletto M, Lok JB (2006) The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. Int J Parasitol 36: 347–352. pmid:16442538 doi: 10.1016/j.ijpara.2005.11.007
|
[17] | Castelletto ML, Massey HC Jr., Lok JB (2009) Morphogenesis of Strongyloides stercoralis infective larvae requires the DAF-16 ortholog FKTF-1. PLoS Pathog 5: e1000370. doi: 10.1371/journal.ppat.1000370. pmid:19360119
|
[18] | Stoltzfus JD, Massey HC Jr., Nolan TJ, Griffith SD, Lok JB (2012) Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS ONE 7: e38587. doi: 10.1371/journal.pone.0038587. pmid:22701676
|
[19] | Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB (2012) RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis 6: e1854. doi: 10.1371/journal.pntd.0001854. pmid:23145190
|
[20] | Stoltzfus JD, Bart SM, Lok JB (2014) cGMP and NHR Signaling Co-regulate Expression of Insulin-Like Peptides and Developmental Activation of Infective Larvae in Strongyloides stercoralis. PLoS Pathog 10: e1004235. doi: 10.1371/journal.ppat.1004235. pmid:25010340
|
[21] | Rogers WP, Sommerville RI (1963) The infective stage of nematode parasites and its significance in parasitism. Adv Parasitol 1: 109–177. pmid:14117619 doi: 10.1016/s0065-308x(08)60503-5
|
[22] | von Megen HHB, van den Elsen SJJ, Holterman MHM, Karssen G, Mooijman PJW, et al. (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11: 927–950. doi: 10.1163/156854109x456862
|
[23] | Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, et al. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392: 71–75. pmid:9510248 doi: 10.1038/32160
|
[24] | Viney ME (2009) How did parasitic worms evolve? Bioessays 31: 496–499. doi: 10.1002/bies.200900010. pmid:19319915
|
[25] | Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, et al. (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124: 1209–1223. pmid:16529801 doi: 10.1016/j.cell.2006.01.037
|
[26] | Antebi A (2015) Nuclear receptor signal transduction in C. elegans. WormBook: 1–49. doi: 10.1895/wormbook.1.64.2
|
[27] | Ohkura K, Suzuki N, Ishihara T, Katsura I (2003) SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans. Development 130: 3237–3248. pmid:12783794 doi: 10.1242/dev.00540
|
[28] | Schaedel ON, Gerisch B, Antebi A, Sternberg PW (2012) Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol 10: e1001306. doi: 10.1371/journal.pbio.1001306. pmid:22505848
|
[29] | Gerisch B, Antebi A (2004) Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 131: 1765–1776. pmid:15084461 doi: 10.1242/dev.01068
|
[30] | Mak HY, Ruvkun G (2004) Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450. Development 131: 1777–1786. pmid:15084462 doi: 10.1242/dev.01069
|
[31] | Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1: 841–851. pmid:11740945 doi: 10.1016/s1534-5807(01)00085-5
|
[32] | Jia K, Albert PS, Riddle DL (2002) DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129: 221–231. pmid:11782415 doi: 10.3410/f.1004084.46855
|
[33] | Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130: 1621–1634. pmid:12620986 doi: 10.1242/dev.00363
|
[34] | Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, et al. (2006) Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell 10: 473–482. pmid:16563875 doi: 10.1016/j.devcel.2006.02.008
|
[35] | Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, et al. (2012) A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 10: e1001305. doi: 10.1371/journal.pbio.1001305. pmid:22505847
|
[36] | Mahanti P, Bose N, Bethke A, Judkins JC, Wollam J, et al. (2014) Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab 19: 73–83. doi: 10.1016/j.cmet.2013.11.024. pmid:24411940
|
[37] | Ludewig AH, Kober-Eisermann C, Weitzel C, Bethke A, Neubert K, et al. (2004) A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev 18: 2120–2133. pmid:15314028 doi: 10.1101/gad.312604
|
[38] | Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A (2009) Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science 324: 95–98. doi: 10.1126/science.1164899. pmid:19342589
|
[39] | Hammell CM, Karp X, Ambros V (2009) A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106: 18668–18673. doi: 10.1073/pnas.0908131106. pmid:19828440
|
[40] | Hochbaum D, Zhang Y, Stuckenholz C, Labhart P, Alexiadis V, et al. (2011) DAF-12 regulates a connected network of genes to ensure robust developmental decisions. PLoS Genet 7: e1002179. doi: 10.1371/journal.pgen.1002179. pmid:21814518
|
[41] | Shen Y, Wollam J, Magner D, Karalay O, Antebi A (2012) A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338: 1472–1476. doi: 10.1126/science.1228967. pmid:23239738
|
[42] | Wang Z, Stoltzfus J, You YJ, Ranjit N, Tang H, et al. (2015) The nuclear receptor DAF-12 regulates nutrient metabolism and reproductive growth in nematodes. PLoS Genet 11: e1005027. doi: 10.1371/journal.pgen.1005027. pmid:25774872
|
[43] | Viney ME, Lok JB (2015) The biology of Strongyloides spp. WormBook: 1–17. doi: 10.1895/wormbook.1.141.2
|
[44] | Nolan TJ, Brenes M, Ashton FT, Zhu X, Forbes WM, et al. (2004) The amphidial neuron pair ALD controls the temperature-sensitive choice of alternative developmental pathways in the parasitic nematode, Strongyloides stercoralis. Parasitology 129: 753–759. pmid:15648698 doi: 10.1017/s0031182004006092
|
[45] | Viney ME (1996) Developmental switching in the parasitic nematode Strongyloides ratti. Proc Biol Sci 263: 201–208. pmid:8728983 doi: 10.1098/rspb.1996.0032
|
[46] | Faust EC, Kagy ES (1933) Experimental studies on human and Primate Species of Strongyloides I. The variability and instability of types. Am J Trop Med Hyg Jan: 47–65.
|
[47] | Viney ME, Brown M, Omoding NE, Bailey JW, Gardner MP, et al. (2004) Why does HIV infection not lead to disseminated strongyloidiasis? J Infect Dis 190: 2175–2180. pmid:15551217 doi: 10.1086/425935
|
[48] | Viney ME, Matthews BE, Walliker D (1992) On the biological and biochemical nature of cloned populations of Strongyloides ratti. J Helminthol 66: 45–52. pmid:1469259 doi: 10.1017/s0022149x00012554
|
[49] | Ashton FT, Bhopale VM, Holt D, Smith G, Schad GA (1998) Developmental switching in the parasitic nematode Strongyloides stercoralis is controlled by the ASF and ASI amphidial neurons. J Parasitol 84: 691–695. pmid:9714195 doi: 10.2307/3284571
|
[50] | Bargmann CI, Horvitz HR (1991) Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251: 1243–1246. pmid:2006412 doi: 10.1126/science.2006412
|
[51] | Yamada M, Matsuda S, Nakazawa M, Arizono N (1991) Species-specific differences in heterogonic development of serially transferred free-living generations of Strongyloides planiceps and Strongyloides stercoralis. J Parasitol 77: 592–594. pmid:1865267 doi: 10.2307/3283165
|
[52] | Grant WN, Stasiuk S, Newton-Howes J, Ralston M, Bisset SA, et al. (2006) Parastrongyloides trichosuri, a nematode parasite of mammals that is uniquely suited to genetic analysis. Int J Parasitol 36: 453–466. pmid:16500655 doi: 10.1016/j.ijpara.2005.11.009
|
[53] | Stasiuk SJ, Scott MJ, Grant WN (2012) Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. Evodevo 3: 1. doi: 10.1186/2041-9139-3-1. pmid:22214222
|
[54] | Butcher RA, Fujita M, Schroeder FC, Clardy J (2007) Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol 3: 420–422. pmid:17558398 doi: 10.1038/nchembio.2007.3
|
[55] | Ludewig AH, Schroeder FC (2013) Ascaroside signaling in C. elegans. WormBook: 1–22. doi: 10.1895/wormbook.1.155.1
|
[56] | Wang Z, Zhou XE, Motola DL, Gao X, Suino-Powell K, et al. (2009) Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Natl Acad Sci U S A 106: 9138–9143. doi: 10.1073/pnas.0904064106. pmid:19497877
|
[57] | Ogawa A, Streit A, Antebi A, Sommer RJ (2009) A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr Biol 19: 67–71. doi: 10.1016/j.cub.2008.11.063. pmid:19110431
|
[58] | Castelletto ML, Gang SS, Okubo RP, Tselikova AA, Nolan TJ, et al. (2014) Diverse host-seeking behaviors of skin-penetrating nematodes. PLoS Pathog 10: e1004305. doi: 10.1371/journal.ppat.1004305. pmid:25121736
|
[59] | Sciacca J, Forbes WM, Ashton FT, Lombardini E, Gamble HR, et al. (2002) Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol Int 51: 53–62. pmid:11880227 doi: 10.1016/s1383-5769(01)00105-2
|
[60] | Forbes WM, Ashton FT, Boston R, Zhu X, Schad GA (2004) Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively. Vet Parasitol 120: 189–198. pmid:15041094 doi: 10.1016/j.vetpar.2004.01.005
|
[61] | Safer D, Brenes M, Dunipace S, Schad G (2007) Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis. Proc Natl Acad Sci U S A 104: 1627–1630. pmid:17234810 doi: 10.1073/pnas.0610193104
|
[62] | Lopez PM, Boston R, Ashton FT, Schad GA (2000) The neurons of class ALD mediate thermotaxis in the parasitic nematode, Strongyloides stercoralis. Int J Parasitol 30: 1115–1121. pmid:10996330 doi: 10.1016/s0020-7519(00)00087-4
|
[63] | Ashton FT, Zhu X, Boston R, Lok JB, Schad GA (2007) Strongyloides stercoralis: Amphidial neuron pair ASJ triggers significant resumption of development by infective larvae under host-mimicking in vitro conditions. Exp Parasitol 115: 92–97. pmid:17067579 doi: 10.1016/j.exppara.2006.08.010
|
[64] | Schad GA, Hellman ME, Muncey DW (1984) Strongyloides stercoralis: hyperinfection in immunosuppressed dogs. Exp Parasitol 57: 287–296. pmid:6723900 doi: 10.1016/0014-4894(84)90103-6
|
[65] | Lok JB (2007) Strongyloides stercoralis: a model for translational research on parasitic nematode biology. WormBook: 1–18. doi: 10.1895/wormbook.1.134.1
|
[66] | Stiernagle T (2006) Maintenance of C. elegans. WormBook: 1–11. doi: 10.1895/wormbook.1.101.1
|
[67] | Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, et al. (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14: 1–18. pmid:15128046 doi: 10.1097/00008571-200401000-00001
|
[68] | Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36. doi: 10.1186/gb-2013-14-4-r36. pmid:23618408
|
[69] | Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923. pmid:22388286
|
[70] | Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352. pmid:19505943
|
[71] | Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, et al. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31: 46–53. doi: 10.1038/nbt.2450. pmid:23222703
|
[72] | Lee SS, Schroeder FC (2012) Steroids as central regulators of organismal development and lifespan. PLoS Biol 10: e1001307. doi: 10.1371/journal.pbio.1001307. pmid:22505849
|
[73] | Eagling VA, Tjia JF, Back DJ (1998) Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br J Clin Pharmacol 45: 107–114. pmid:9491822 doi: 10.1046/j.1365-2125.1998.00679.x
|
[74] | Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17: 707–718. pmid:8893027 doi: 10.1016/s0896-6273(00)80202-0
|
[75] | Hannich JT, Entchev EV, Mende F, Boytchev H, Martin R, et al. (2009) Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev Cell 16: 833–843. doi: 10.1016/j.devcel.2009.04.012. pmid:19531354
|
[76] | Huang SC, Chan DT, Smyth DJ, Ball G, Gounaris K, et al. (2010) Activation of Nippostrongylus brasiliensis infective larvae is regulated by a pathway distinct from the hookworm Ancylostoma caninum. Int J Parasitol 40: 1619–1628. doi: 10.1016/j.ijpara.2010.06.004. pmid:20654619
|
[77] | Jones D, Ed. (1998) Piperonyl Butoxide: The Insecticide Synergist: Academic Press.
|
[78] | Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, et al. (2015) The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes. Nat Genet.
|
[79] | Zhi X, Zhou XE, Melcher K, Motola DL, Gelmedin V, et al. (2012) Structural conservation of ligand binding reveals a bile acid-like signaling pathway in nematodes. J Biol Chem 287: 4894–4903. doi: 10.1074/jbc.M111.315242. pmid:22170062
|
[80] | Evans RM, Mangelsdorf DJ (2014) Nuclear Receptors, RXR, and the Big Bang. Cell 157: 255–266. doi: 10.1016/j.cell.2014.03.012. pmid:24679540
|