[1] | Ehlers B, Wieland U. The novel human polyomaviruses HPyV6, 7, 9 and beyond. APMIS. 2013; 10.1111:1–13. doi: 10.1111/apm.12104
|
[2] | Scuda N, Madinda NF, Akoua-Koffi C, Adjogous EV, Wevers D, Hoffman J, et al. Novel Polyomaviruses of Nonhuman Primates: Genetic and Serological Predictors for the Existence of Multiple Unknown Polyomaviruses within the Human Population. PLoS Pathogens. 2013;9:e1003429. doi: 10.1371/journal.ppat.1003429. pmid:23818846
|
[3] | Jiang M, Abend JR, Johson SF, Imperiale MJ. The Role of Polyomaviruses in Human Disease. Virology. 2009;384:266–73. doi: 10.1016/j.virol.2008.09.027. pmid:18995875
|
[4] | White MK, Gordon J, Khalili K. The Rapidly Expanding Family of Human Polyomaviruses: Recent Developments in Understanding Their Life Cycle and Role in Human Pathology. PLOS Pathogens. 2013;9:e1003206. doi: 10.1371/journal.ppat.1003206. pmid:23516356
|
[5] | Miskin DP, Koralnik IJ. Novel syndromes associated with JC virus infection of neurons and meningeal cells: no longer a gray area. Curr Opin Neurol. 2015;28:1–7. doi: 10.1097/wco.0000000000000201
|
[6] | Padgett BL, Zurhein GM, Walker DL, Eckroade RJ, Dessel BH. Cultivation of papova-like virus from human brain wiht progressive multifocal leukoencephalopathy. Lancet. 1971;297:1257–60. doi: 10.1016/s0140-6736(71)91777-6
|
[7] | Gheuens S, Wuthrich C, Koralnik IJ. Progressive Multifocal Leukoencephalopathy: Why Gray and White Matter. Annu Rev Pathol Mech Dis. 2012;8:189–215. doi: 10.1146/annurev-pathol-020712-164018
|
[8] | Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100. doi: 10.1126/science.1152586. pmid:18202256
|
[9] | Shuda M, Feng H, Kwun HJ, Rosen ST, Gjoerup O, Moore PS, et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc NatlAcadSciUSA. 2008;105:16272–7. doi: 10.1073/pnas.0806526105
|
[10] | Fishman JA. BK Virus Nephropathy-Polyomavirus Adding Insult to Injury. New England Journal of Medicine. 2002;347:527–30. pmid:12181409 doi: 10.1056/nejme020076
|
[11] | Kuypers DRJ. Management of polyomavirus-associated nephropathy in renal transplan recipients. Nature Review Nephrology. 2012;8:390–402. doi: 10.1038/nrneph.2012.64
|
[12] | Borowiec JA, Dean FB, Bullock PA, Hurwitz J. Binding and unwinding -how T antigen engages the SV40 origin of DNA replication. Cell. 1990;60:181–4. pmid:2153460 doi: 10.1016/0092-8674(90)90730-3
|
[13] | Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333–74. pmid:12045100
|
[14] | Fanning E, Knippers R. Structure and function of simian virus 40 large tumor antigen. Annual Review of Biochemistry. 1992;61:55–85. pmid:1323237 doi: 10.1146/annurev.bi.61.070192.000415
|
[15] | Simmons DT. SV40 Large T Antigen Functions in DNA Replication and Transformation. Advances in Virus Research. 2000;55:75–134. pmid:11050941 doi: 10.1016/s0065-3527(00)55002-7
|
[16] | Kelly TJ. SV40 DNA replication. J Biol Chem. 1988;263:17889–92. pmid:2848017
|
[17] | Waga S, Stillman B. The DNA Replication Fork in Eukaryotic Cells. In: Richardson CC, editor. Annual Review of Biochemistry. 67. Palo Alto: Annual Reviews Inc.; 1998. p. 721–51. pmid:9759502
|
[18] | Maginnis MS, Atwood WJ. JC Virus: An oncogenic virus in animals and humans? Seminars in Cancer Biology. 2009;19:261–9. doi: 10.1016/j.semcancer.2009.02.013. pmid:19505654
|
[19] | Poulin DL, DeCaprio JA. Is There a Role for SV40 in Human Cancer. J Clin Oncol. 2006;24:4356–65. pmid:16963733 doi: 10.1200/jco.2005.03.7101
|
[20] | Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Seminars in Cancer Biology. 2009;19:218–28. doi: 10.1016/j.semcancer.2009.03.002. pmid:19505649
|
[21] | Ferenczy MW, Marshall LJ, Nelson CDS, Atwood WJ, Nath A, Khalili K, et al. Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Deymelinating Disease of the Human Brain. Clinical Microbiology Reviews. 2012;25:471–506. doi: 10.1128/CMR.05031-11. pmid:22763635
|
[22] | Bellizzi A, Anzivino E, Rodio DM, Palamara AT, Nencioni L, Pietropaolo V. New Insights on Human Polyomavirus JC and Pathogenesis of Progressive Multifocal Leukoencephalopathy. Clinical and Developmental Immunology. 2013;2013(ID 839719). doi: 10.1155/2013/839719
|
[23] | An P, Saenz Robles MT, Pipas JM. Large T Antigens of Polyomaviruses: Amazing Molecular Machines. Annu Rev Microbiol. 2012;66:213–36. doi: 10.1146/annurev-micro-092611-150154. pmid:22994493
|
[24] | Topalis D, Andrei G, Snoeck R. The large tumor antigen: A "Swiss Army knife" protein possessing the functions required for the polyomavirus life cycle. Antiviral Research. 2013;97:122–36. doi: 10.1016/j.antiviral.2012.11.007. pmid:23201316
|
[25] | Fanning E, Zhao K. SV40 DNA replication: From the A gene to a nanomachine. Virology. 2009;384:352–9. doi: 10.1016/j.virol.2008.11.038. pmid:19101707
|
[26] | Meinke G, Bullock PA. Structural "snap-shots" of the initiation of SV40 replication. In: Gaston K, editor. Small DNA Tumor Viruses. Norwich: Horizon Scientific Press; 2012. p. 195–215.
|
[27] | Meinke G, Phelan PJ, Moine S, Bochkareva E, Bochkarev A, Bullock PA, et al. The crystal structure of the SV40 T-antigen origin binding domain in complex with DNA. PloS Biology. 2007;5:e23. pmid:17253903 doi: 10.1371/journal.pbio.0050023
|
[28] | Bochkareva E, Martynowski D, Seitova A, Bochkarev A. Structure of the origin-binding domain of simian virus 40 large T antigen bound to DNA. The EMBO Journal. 2006;25:5961–9. pmid:17139255 doi: 10.1038/sj.emboj.7601452
|
[29] | Harrison CJ, Meinke G, Kwun HJ, Rogalin H, Phelan PJ, Bullock PA, et al. Asymmetric Assembly of Merkel Cell Polyomavirus Large T-antigen Origin Binding Domain at the Viral Origin. Journal of Molecular Biology. 2011;409:529–42. doi: 10.1016/j.jmb.2011.03.051. pmid:21501625
|
[30] | Harrison C, Jiang T, Banerjee P, Meinke G, D'Abramo CM, Schaffhausen B, et al. Polyomavirus Large T-antigen Binds Symmetrical Repeats at the Viral Origin in an Asymmetrical Manner. Journal of Virology. 2013;87:13751–9. Epub 2013/10/11. doi: 10.1128/JVI.01740-13 pmid:24109229.
|
[31] | Chang YP, Xu M, Machado ACD, Yu XJ, Rohs R, Chen XS. Mechanism of Origin DNA Recognition and Assembly of an Initiator-Helicase Complex by SV40 Large Tumor Antigen. Cell. 2013;3:1–11. doi: 10.1016/j.celrep.2013.03.002
|
[32] | Cuesta I, Nunez-Ramirez R, Scheres SHW, Gai D, Chen XS, Fanning E, et al. Conformational Rearrangements of SV40 Large T Antigen during Early Replication Events. J Mol Biol. 2010;397:1276–86. doi: 10.1016/j.jmb.2010.02.042. pmid:20219473
|
[33] | Meinke G, Bullock PA, Bohm A. The crystal structure of the T-ag origin binding domain. J of Virology. 2006;80:4304–12. doi: 10.1128/jvi.80.9.4304-4312.2006
|
[34] | Meinke G, Phelan P., Fradet-Turcotte A., Archambault J. and Bullock P.A. Structure-based design of a disulfide-linked oligomeric form of the Simian Virus 40 (SV40) large T antigen DNA-binding domain. Acta Crystallogr D Biol Crystallogr. 2011;D67:560–7. doi: 10.1107/s0907444911014302
|
[35] | Meinke G, Phelan PJ, Harrison CJ, Bullock PA. Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly. Journal of Virology. 2013;87(5):2923–34. Epub 2012/12/28. doi: 10.1128/JVI.02549-12 pmid:23269808; PubMed Central PMCID: PMC3571380.
|
[36] | Reese DK, Sreekumar KR, Bullock PA. Interactions Required for Binding of Simian Virus 40 T Antigen to the Viral Origin and Molecular Modeling of Initial Assembly Events. J of Virology. 2004;78:2921–34. doi: 10.1128/jvi.78.6.2921-2934.2004
|
[37] | Kumar A, Meinke G, Reese DK, Moine S, Phelan PJ, Fradet-Turcotte A, et al. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol. 2007;81(9):4808–18. pmid:17287270 doi: 10.1128/jvi.02451-06
|
[38] | Shen J, Gai D, Patrick A, Greenleaf WB, Chen XS. The roles of the residues on the channel β-hairpin and loop structures of simian virus 40 hexameric helicase. Proc Natl Acad Sci USA. 2005;102:11248–53. pmid:16061814 doi: 10.1073/pnas.0409646102
|
[39] | Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, DeCaprio JA, et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature. 2003;423:512–8. pmid:12774115 doi: 10.1038/nature01691
|
[40] | Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. Mechanisms of Conformational Change for a Replicative Hexameric Helicase of SV40 Large Tumor Antigen. Cell. 2004;119:47–60. pmid:15454080 doi: 10.1016/j.cell.2004.09.017
|
[41] | Brewster AS, Chen XS. Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex. Critical Reviews in Biochemistry and Molecular Biology. 2010;45:243–56. doi: 10.3109/10409238.2010.484836. pmid:20441442
|
[42] | Meinke G, Phelan PJ, Kalekar R, Shin J, Bohm A, Bullock PA. Insights into the Initiation of JC Virus DNA Replication Derived from the Crystal Structure of the T-Antigen Origin Binding Domain. PLOS Pathogens. 2014;10:e1003966. doi: 10.1371/journal.ppat.1003966. pmid:24586168
|
[43] | Simmons DT, Loeber G, Tegtmeyer P. Four major sequence elements of simian virus 40 large T antigen coordinate its specific and nonspecific DNA binding. Journal of Virology. 1990;64:1973–83. pmid:2157865
|
[44] | Luo X, Sanford DG, Bullock PA, Bachovchin WW. Structure of the origin specific DNA binding domain from simian virus 40 T-antigen. Nature Structural Biology. 1996;3:1034–9. pmid:8946857 doi: 10.1038/nsb1296-1034
|
[45] | Bullock PA. The Initiation of Simian Virus 40 DNA Repliation in Vitro. Critical Reviews in Biochemistry and Molecular Biology. 1997;32(6):503–68. pmid:9444478 doi: 10.3109/10409239709082001
|
[46] | Shin J, Phelan PJ, Chhum P, Bashkenova N, Yim S, Parker R, et al. Analysis of JC Virus DNA Replication Using a Quantitative and High-Throughput Assay. Virology. 2014;468–470:113–25. doi: 10.1016/j.virol.2014.07.042. pmid:25155200
|
[47] | Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. Epub 2011/10/13. doi: 10.1038/msb.2011.75 pmid:21988835; PubMed Central PMCID: PMC3261699.
|
[48] | Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. Epub 2009/01/20. btp033 [pii] doi: 10.1093/bioinformatics/btp033 pmid:19151095; PubMed Central PMCID: PMC2672624.
|
[49] | Boichuk S, Hu L, Hein J, Gjoerup OV. Multiple DNA damage signaling and repair pathways deregulaed by simian virus 40 large T antigen. Journal of Virology. 2010;84:8007–20. doi: 10.1128/JVI.00334-10. pmid:20519379
|
[50] | Otwinowski Z, Minor W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. In: Carter CW, Sweet RM, editors. Methods in Enzymology. Macromolecular Crystallography, part A. New York: Academic Press; 1997. p. 307–26.
|
[51] | McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winnn MD, Storoni LC, Read RJ. Phaser crystalographic software. Jounal of applied crystallography. 2007;40:658–74. doi: 10.1107/s0021889807021206
|
[52] | Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta crystallographica Section D, Biological crystallography. 2011;67(Pt 4):235–42. Epub 2011/04/05. doi: 10.1107/S0907444910045749 pmid:21460441; PubMed Central PMCID: PMC3069738.
|
[53] | Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta crystallographica Section D, Biological crystallography. 2011;67(Pt 4):355–67. Epub 2011/04/05. doi: 10.1107/S0907444911001314 pmid:21460454; PubMed Central PMCID: PMC3069751.
|
[54] | Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):213–21. Epub 2010/02/04. S0907444909052925 [pii] doi: 10.1107/S0907444909052925 pmid:20124702; PubMed Central PMCID: PMC2815670.
|
[55] | Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501. Epub 2010/04/13. S0907444910007493 [pii] doi: 10.1107/S0907444910007493 pmid:20383002; PubMed Central PMCID: PMC2852313.
|
[56] | Joosten RP, Long F, Murshudov GN, Perrakis A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1:213–20. doi: 10.1107/S2052252514009324. pmid:25075342
|
[57] | Laskowski RA. PDBsum new things. Nucleic Acids Res. 2009;37(Database issue):D355–9. Epub 2008/11/11. gkn860 [pii] doi: 10.1093/nar/gkn860 pmid:18996896; PubMed Central PMCID: PMC2686501.
|
[58] | Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J of Mol Biol. 2007;372:774–97. doi: 10.1016/j.jmb.2007.05.022
|
[59] | DeLano WL. The PyMOL Molecular Graphics System. Delano Scientific, Palo Alto, CA, USA; 2002.
|
[60] | Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60:2256–68. pmid:15572779 doi: 10.1107/s0907444904026460
|
[61] | Titolo S, Welchner E, White PW, Archambault J. Characterization of the DNA-binding properties of the origin-binding domain of SV40 Large T Antigen by fluorescence anisotropy. Journal of Virology. 2003;77:5512–8. pmid:12692254 doi: 10.1128/jvi.77.9.5512-5518.2003
|
[62] | Fradet-Turcotte A, Vincent C, Joubert S, Bullock PA, Archambault J. Quantitative Analysis of the Binding of Simian Virus 40 large T Antigen to DNA. Journal of Virology. 2007;81:9162–74. pmid:17596312 doi: 10.1128/jvi.00384-07
|
[63] | Tang Q, Bell P, Tegtmeyer P, Maul GG. Replication but Not Transcription of Simian Virus 40 DNA Is Dependent on Nuclear Domain 10. Journal of Virology. 2000;74:9694–700. pmid:11000241 doi: 10.1128/jvi.74.20.9694-9700.2000
|
[64] | Zhao X, Madden-Fuentes RJ, Lou BX, Pipas JM, Gerhardt J, Rigell CJ, et al. Ataxia Telangiectasia-Mutated Damage-Signaling Kinase- and Proteasome-Dependent Destruction of Mre11-Rad50-Nbs1 Subunits in Simian Virus 40-Infected Primate Cells. Journal of Virology. 2008;82:5316–28. doi: 10.1128/JVI.02677-07. pmid:18353955
|
[65] | Simmons DT, Wun-Kim K, Young W. Identification of simian virus 40 T-antigen residues important for specific and nonspecific binding to DNA and for helicase activity. Journal of Virology. 1990;64:4858–65. pmid:2168972
|
[66] | Wun-Kim K, Upson R, Young W, Melendy T, Stillman B, Simmons DT. The DNA-binding domain of simian virus 40 tumor antigen has multiple functions. Journal of Virology. 1993;67:7608–11. pmid:8230479
|
[67] | Reese DK, Meinke G, Kumar A, Moine S, Chen K, Sudmeier JL, et al. Analyses of the Interaction between the Origin Binding Domain from Simian Virus 40 T-antigen and single stranded DNA Provides Insights into DNA unwinding and Initiation of DNA Replication. Journal of Virology. 2006;80:12248–59. pmid:17005644 doi: 10.1128/jvi.01201-06
|
[68] | Foster EC, Simmons DT. The SV40 Large T-Antigen Origin Binding Domain Directly Participates in DNA Unwinding. Biochemistry. 2010;49:2087–96. doi: 10.1021/bi901827k. pmid:20108984
|
[69] | Lee S-J, Syed S, Enemark EJ, Schuck S, Stenlund A, Ha T, et al. Dymanic look at DNA unwinding by a replicative helicase. Proc NatlAcadSciUSA. 2014:E827–E35. doi: 10.1073/pnas.1322254111
|
[70] | Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature. 2006;442:270–5. pmid:16855583 doi: 10.1038/nature04943
|
[71] | Chaban Y, Stead JA, Ryzhenkova K, Whelan F, Lamber K, Antson A, et al. Structural basis for DNA strand separation by a hexameric replicative helicase. Nucleic Acids Res. 2015. doi: 10.1093/nar/gkv778
|
[72] | Itsathitphaisarn O, Wing RA, Eliason WK, J. W, Steitz TA. The hexameric helicase DnaB Adopts a Nonplanar Conformation during Translocation. Cell. 2012;1512:267–77. doi: 10.1016/j.cell.2012.09.014
|
[73] | Enemark EJ, Stenlund A, Joshua-Tor L. Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO Journal. 2002;21:1487–96. pmid:11889054 doi: 10.1093/emboj/21.6.1487
|
[74] | Enemark EJ, Chen G, Vaughn DE, Stenlund A, joshua-Tor L. Crystal Structure of the DNA Binding Domain of the Replication Initiation Protein E1 from Papillomavirus. Molecular Cell. 2000;6:149–58. pmid:10949036 doi: 10.1016/s1097-2765(05)00016-x
|
[75] | Ahnert P, Patel SS. Asymmetric Interactions of Hexameric Bacteriophage T7 DNA Helicase with the 5'-and 3'-Tails of the Forked DNA Substrate. JBiol Chem. 1997;272:32267–73. doi: 10.1074/jbc.272.51.32267
|
[76] | Zhu B, Lee S-J, Richardson CC. Bypass of a Nick by the Replisome of Bacteriophage T7. Journal of Biological Chemistry. 2011;286:28488–97. doi: 10.1074/jbc.M111.252023. pmid:21701044
|
[77] | Shin J-H, Jiang Y, Grabowski B, Hurwitz J, Kelman Z. Substrate Requirements for Duplex DNA Translocation by the Eukaryal and Archaeal Minichromosome Maintenance Helicases. Journal of Biological Chemistry. 2003;278:49053–62. pmid:12975364 doi: 10.1074/jbc.m308599200
|
[78] | Kaplan DL, Davey MJ, O'Donnell M. Mcm4,6,7 uses a 'pump in ring' mechanism to unwind DNA by steric exclusion and actively translocates along a duplex. J Biol Chem. 2003;278:49171–82. pmid:13679365 doi: 10.1074/jbc.m308074200
|
[79] | Lyubimov AY, Costa A, Bleichert F, Botchan MR, Berger JM. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase form a minimalist eukaryote. Proc NatlAcadSciUSA. 2012;109:11999–2004. doi: 10.1073/pnas.1209406109
|