全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence

DOI: 10.1371/journal.ppat.1005340

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes.

References

[1]  WHO. Control of the leishmaniases. World Health Organ Tech Rep Ser. 2010; (949):xii–xiii, 1–186, back cover. Epub 2010/01/01. pmid:21485694.
[2]  Mittra B, Andrews NW. IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation. Trends Parasitol. 2013;29(10):489–96. doi: 10.1016/j.pt.2013.07.007 pmid:23948431; PubMed Central PMCID: PMC3783550.
[3]  Tsigankov P, Gherardini PF, Helmer-Citterich M, Zilberstein D. What has proteomics taught us about Leishmania development? Parasitology. 2012;139(9):1146–57. Epub 2012/03/01. doi: S0031182012000157 [pii] doi: 10.1017/S0031182012000157 pmid:22369930.
[4]  Bates PA, Robertson CD, Tetley L, Coombs GH. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992;105 (Pt 2):193–202. Epub 1992/10/01. pmid:1454417. doi: 10.1017/s0031182000074102
[5]  Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2008;22(2):590–602. Epub 2007/09/22. doi: fj.07-9254com [pii] doi: 10.1096/fj.07-9254com pmid:17884972.
[6]  Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010 pmid:25305438; PubMed Central PMCID: PMC4380867.
[7]  Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–67. doi: 10.1016/j.molcel.2012.09.025 pmid:23102266; PubMed Central PMCID: PMC3484374.
[8]  Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med. 2013;210(2):401–16. Epub 2013/02/06. doi: jem.20121368 [pii] doi: 10.1084/jem.20121368 pmid:23382545.
[9]  Getachew F, Gedamu L. Leishmania donovani iron superoxide dismutase A is targeted to the mitochondria by its N-terminal positively charged amino acids. Mol Biochem Parasitol. 2007;154(1):62–9. Epub 2007/05/26. doi: S0166-6851(07)00111-9 [pii] doi: 10.1016/j.molbiopara.2007.04.007 pmid:17524502.
[10]  Plewes KA, Barr SD, Gedamu L. Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infect Immun. 2003;71(10):5910–20. Epub 2003/09/23. pmid:14500512. doi: 10.1128/iai.71.10.5910-5920.2003
[11]  Lane DJ, Merlot AM, Huang ML, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta. 2015;1853(5):1130–44. doi: 10.1016/j.bbamcr.2015.01.021 pmid:25661197.
[12]  Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A. 2010;107(24):10775–82. doi: 10.1073/pnas.0912925107 pmid:20495089; PubMed Central PMCID: PMC2890738.
[13]  Robinson AJ, Kunji ER. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci U S A. 2006;103(8):2617–22. doi: 10.1073/pnas.0509994103 pmid:16469842; PubMed Central PMCID: PMC1413793.
[14]  Colasante C, Pena Diaz P, Clayton C, Voncken F. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation. Mol Biochem Parasitol. 2009;167(2):104–17. doi: 10.1016/j.molbiopara.2009.05.004 pmid:19463859.
[15]  Schluter A, Wiesgigl M, Hoyer C, Fleischer S, Klaholz L, Schmetz C, et al. Expression and subcellular localization of cpn60 protein family members in Leishmania donovani. Biochim Biophys Acta. 2000;1491(1–3):65–74. pmid:10760571. doi: 10.1016/s0167-4781(00)00028-2
[16]  Dey R, Meneses C, Salotra P, Kamhawi S, Nakhasi HL, Duncan R. Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol. 2010;77(2):399–414. Epub 2010/05/26. doi: MMI7214 [pii] doi: 10.1111/j.1365-2958.2010.07214.x pmid:20497506.
[17]  Boitz JM, Strasser R, Yates PA, Jardim A, Ullman B. Adenylosuccinate synthetase and adenylosuccinate lyase deficiencies trigger growth and infectivity deficits in Leishmania donovani. J Biol Chem. 2013;288(13):8977–90. doi: 10.1074/jbc.M112.431486 pmid:23404497; PubMed Central PMCID: PMCPMC3610970.
[18]  Li L, Kaplan J. A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism. J Biol Chem. 2004;279(32):33653–61. doi: 10.1074/jbc.M403146200 pmid:15161905.
[19]  Foury F, Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem. 2002;277(27):24475–83. doi: 10.1074/jbc.M111789200 pmid:12006577.
[20]  Coustou V, Biran M, Breton M, Guegan F, Riviere L, Plazolles N, et al. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem. 2008;283(24):16342–54. doi: 10.1074/jbc.M709592200 pmid:18430732.
[21]  Opperdoes FR. Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol. 1987;41:127–51. doi: 10.1146/annurev.mi.41.100187.001015 pmid:3120638.
[22]  Priest JW, Hajduk SL. Developmental regulation of mitochondrial biogenesis in Trypanosoma brucei. J Bioenerg Biomembr. 1994;26(2):179–91. pmid:8056785. doi: 10.1007/bf00763067
[23]  Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell. 2012;11(2):183–93. doi: 10.1128/EC.05282-11 pmid:22158713; PubMed Central PMCID: PMCPMC3272898.
[24]  Guler JL, Kriegova E, Smith TK, Lukes J, Englund PT. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol Microbiol. 2008;67(5):1125–42. doi: 10.1111/j.1365-2958.2008.06112.x pmid:18221265; PubMed Central PMCID: PMC3776142.
[25]  Mukherjee A, Langston LD, Ouellette M. Intrachromosomal tandem duplication and repeat expansion during attempts to inactivate the subtelomeric essential gene GSH1 in Leishmania. Nucleic Acids Res. 2011;39(17):7499–511. doi: 10.1093/nar/gkr494 pmid:21693561; PubMed Central PMCID: PMC3177219.
[26]  Courret N, Prina E, Mougneau E, Saraiva EM, Sacks DL, Glaichenhaus N, et al. Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur J Immunol. 1999;29(3):762–73. doi: 10.1002/(SICI)1521-4141(199903)29:03<762::AID-IMMU762>3.0.CO;2-4 pmid:10092078.
[27]  Pinto-da-Silva LH, Fampa P, Soares DC, Oliveira SM, Souto-Padron T, Saraiva EM. The 3A1-La monoclonal antibody reveals key features of Leishmania (L) amazonensis metacyclic promastigotes and inhibits procyclics attachment to the sand fly midgut. Int J Parasitol. 2005;35(7):757–64. doi: 10.1016/j.ijpara.2005.03.004 pmid:15885694.
[28]  Gaur U, Showalter M, Hickerson S, Dalvi R, Turco SJ, Wilson ME, et al. Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts. Exp Parasitol. 2009;122(3):182–91. doi: 10.1016/j.exppara.2009.03.014 pmid:19328787; PubMed Central PMCID: PMC2720449.
[29]  Oyola SO, Evans KJ, Smith TK, Smith BA, Hilley JD, Mottram JC, et al. Functional analysis of Leishmania cyclopropane fatty acid synthetase. PLoS One. 2012;7(12):e51300. doi: 10.1371/journal.pone.0051300 pmid:23251490; PubMed Central PMCID: PMC3519623.
[30]  Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, McConville MJ. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog. 2014;10(1):e1003888. doi: 10.1371/journal.ppat.1003888 pmid:24465208; PubMed Central PMCID: PMC3900632.
[31]  Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, et al. Mitoferrin is essential for erythroid iron assimilation. Nature. 2006;440(7080):96–100. doi: 10.1038/nature04512 pmid:16511496.
[32]  Troadec MB, Warner D, Wallace J, Thomas K, Spangrude GJ, Phillips J, et al. Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria. Blood. 2011;117(20):5494–502. doi: 10.1182/blood-2010-11-319483 pmid:21310927; PubMed Central PMCID: PMC3109720.
[33]  Navarro JA, Botella JA, Metzendorf C, Lind MI, Schneuwly S. Mitoferrin modulates iron toxicity in a Drosophila model of Friedreichs ataxia. Free Radic Biol Med. 2015;85:71–82. doi: 10.1016/j.freeradbiomed.2015.03.014 pmid:25841783.
[34]  Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol. 2009;29(4):1007–16. doi: 10.1128/MCB.01685-08 pmid:19075006; PubMed Central PMCID: PMC2643804.
[35]  Wang Y, Langer NB, Shaw GC, Yang G, Li L, Kaplan J, et al. Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria. Exp Hematol. 2011;39(7):784–94. doi: 10.1016/j.exphem.2011.05.003 pmid:21627978; PubMed Central PMCID: PMC3143264.
[36]  Metzendorf C, Lind MI. Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis. BMC Dev Biol. 2010;10:68. doi: 10.1186/1471-213X-10-68 pmid:20565922; PubMed Central PMCID: PMC2905335.
[37]  Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 2001;3(12):773–84. Epub 2001/12/12. doi: 150 [pii]. pmid:11736990. doi: 10.1046/j.1462-5822.2001.00150.x
[38]  Huynh C, Sacks DL, Andrews NW. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med. 2006;203(10):2363–75. Epub 2006/09/27. doi: jem.20060559 [pii] doi: 10.1084/jem.20060559 pmid:17000865.
[39]  Ben-Othman R, Flannery AR, Miguel DC, Ward DM, Kaplan J, Andrews NW. Leishmania-mediated inhibition of iron export promotes parasite replication in macrophages. PLoS Pathog. 2014;10(1):e1003901. doi: 10.1371/journal.ppat.1003901 pmid:24497831; PubMed Central PMCID: PMC3907422.
[40]  Flannery AR, Huynh C, Mittra B, Mortara RA, Andrews NW. LFR1 Ferric Iron Reductase of Leishmania amazonensis Is Essential for the Generation of Infective Parasite Forms. J Biol Chem. 2011;286(26):23266–79. Epub 2011/05/12. doi: M111.229674 [pii] doi: 10.1074/jbc.M111.229674 pmid:21558274.
[41]  Taylor MC, Kelly JM. Iron metabolism in trypanosomatids, and its crucial role in infection. Parasitology. 2010;137(6):899–917. Epub 2010/02/16. doi: S0031182009991880 [pii] doi: 10.1017/S0031182009991880 pmid:20152063.
[42]  Ligtenberg MJ, Bitter W, Kieft R, Steverding D, Janssen H, Calafat J, et al. Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J. 1994;13(11):2565–73. pmid:8013456; PubMed Central PMCID: PMCPMC395130.
[43]  Mach J, Tachezy J, Sutak R. Efficient iron uptake via a reductive mechanism in procyclic Trypanosoma brucei. J Parasitol. 2013;99(2):363–4. doi: 10.1645/GE-3237.1 pmid:22924933.
[44]  van Weelden SW, Fast B, Vogt A, van der Meer P, Saas J, van Hellemond JJ, et al. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem. 2003;278(15):12854–63. Epub 2003/02/04. doi: 10.1074/jbc.M213190200 M213190200 [pii]. pmid:12562769.
[45]  Bringaud F, Riviere L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149(1):1–9. doi: 10.1016/j.molbiopara.2006.03.017 pmid:16682088.
[46]  Kloehn J, Saunders EC, O'Callaghan S, Dagley MJ, McConville MJ. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog. 2015;11(2):e1004683. doi: 10.1371/journal.ppat.1004683 pmid:25714830; PubMed Central PMCID: PMC4340956.
[47]  Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, et al. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A. 2006;103(14):5502–7. doi: 10.1073/pnas.0509196103 pmid:16569701; PubMed Central PMCID: PMC1459384.
[48]  Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 1994;48:449–70. Epub 1994/01/01. doi: 10.1146/annurev.mi.48.100194.002313 pmid:7826014.
[49]  Mesquita-Rodrigues C, Menna-Barreto RF, Saboia-Vahia L, Da-Silva SA, de Souza EM, Waghabi MC, et al. Cellular growth and mitochondrial ultrastructure of leishmania (Viannia) braziliensis promastigotes are affected by the iron chelator 2,2-dipyridyl. PLoS Negl Trop Dis. 2013;7(10):e2481. doi: 10.1371/journal.pntd.0002481 pmid:24147167; PubMed Central PMCID: PMC3798463.
[50]  Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Filho BP, et al. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol. 2014;14:236. doi: 10.1186/s12866-014-0236-0 pmid:25253283; PubMed Central PMCID: PMC4188478.
[51]  Alzate JF, Arias AA, Moreno-Mateos D, Alvarez-Barrientos A, Jimenez-Ruiz A. Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum. Mol Biochem Parasitol. 2007;152(2):192–202. Epub 2007/02/16. doi: S0166-6851(07)00019-9 [pii] doi: 10.1016/j.molbiopara.2007.01.006 pmid:17300844.
[52]  Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99(1):89–101. pmid:10215027. doi: 10.1016/s0166-6851(99)00002-x
[53]  Oberholzer M, Lopez MA, Ralston KS, Hill KL. Approaches for functional analysis of flagellar proteins in African trypanosomes. Methods Cell Biol. 2009;93:21–57. doi: 10.1016/S0091-679X(08)93002-8 pmid:20409810; PubMed Central PMCID: PMC3821762.
[54]  Redmond S, Vadivelu J, Field MC. RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Mol Biochem Parasitol. 2003;128(1):115–8. pmid:12706807. doi: 10.1016/s0166-6851(03)00045-8
[55]  LaCount DJ, Barrett B, Donelson JE. Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem. 2002;277(20):17580–8. doi: 10.1074/jbc.M200873200 pmid:11877446.
[56]  Fulwiler AL, Soysa DR, Ullman B, Yates PA. A rapid, efficient and economical method for generating leishmanial gene targeting constructs. Mol Biochem Parasitol. 2011;175(2):209–12. doi: 10.1016/j.molbiopara.2010.10.008 pmid:21055426; PubMed Central PMCID: PMC3018707.
[57]  Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983;153(1):163–8. pmid:6336730; PubMed Central PMCID: PMC217353.
[58]  Becker SM, Delamarre L, Mellman I, Andrews NW. Differential role of the Ca(2+) sensor synaptotagmin VII in macrophages and dendritic cells. Immunobiology. 2009;214(7):495–505. Epub 2009/01/23. doi: S0171-2985(08)00145-9 [pii] doi: 10.1016/j.imbio.2008.11.006 pmid:19157638.
[59]  Tabbara KS, Peters NC, Afrin F, Mendez S, Bertholet S, Belkaid Y, et al. Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun. 2005;73(8):4714–22. Epub 2005/07/26. doi: 73/8/4714 [pii] doi: 10.1128/IAI.73.8.4714-4722.2005 pmid:16040984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133