Epstein-Barr Virus (EBV) transforms resting B-lymphocytes into proliferating lymphoblasts to establish latent infections that can give rise to malignancies. We show here that EBV-encoded transcriptional regulator EBNA2 drives the cooperative and combinatorial genome-wide binding of two master regulators of B-cell fate, namely EBF1 and RBP-jκ. Previous studies suggest that these B-cell factors are statically bound to target gene promoters. In contrast, we found that EBNA2 induces the formation of new binding for both RBP-jκ and EBF1, many of which are in close physical proximity in the cellular and viral genome. These newly induced binding sites co-occupied by EBNA2-EBF1-RBP-jκ correlate strongly with transcriptional activation of linked genes that are important for B-lymphoblast function. Conditional expression or repression of EBNA2 leads to a rapid alteration in RBP-jκ and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that EBNA2 facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming necessary to drive B-lymphoblast growth and survival.
References
[1]
Longnecker R, Kieff E, Cohen JI. Epstein-Barr Virus. In: Knipe DM, Howley PM, editors. Fields Virology. I. 6th ed. Philadelphia: Lipincott; 2013. p. 1898–959.
[2]
Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nature reviews Cancer. 2004;4(10):757–68. pmid:15510157 doi: 10.1038/nrc1452
[3]
Thorley-Lawson DA, Hawkins JB, Tracy SI, Shapiro M. The pathogenesis of Epstein-Barr virus persistent infection. Current opinion in virology. 2013;3(3):227–32. doi: 10.1016/j.coviro.2013.04.005. pmid:23683686
[4]
Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. Current opinion in virology. 2012;2(4):453–8. doi: 10.1016/j.coviro.2012.07.001. pmid:22858118
[5]
Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nature reviews Immunology. 2001;1(1):75–82. pmid:11905817 doi: 10.1038/35095584
[6]
Kang MS, Kieff E. Epstein-Barr virus latent genes. Experimental & molecular medicine. 2015;47:e131. doi: 10.1038/emm.2014.84
[7]
Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Molecular and cellular biology. 1996;16(3):952–9. pmid:8622698 doi: 10.1128/mcb.16.3.952
[8]
Strobl LJ, Hofelmayr H, Stein C, Marschall G, Brielmeier M, Laux G, et al. Both Epstein-Barr viral nuclear antigen 2 (EBNA2) and activated Notch1 transactivate genes by interacting with the cellular protein RBP-J kappa. Immunobiology. 1997;198(1–3):299–306. pmid:9442401 doi: 10.1016/s0171-2985(97)80050-2
[9]
Hayward SD, Liu J, Fujimuro M. Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Science's STKE: signal transduction knowledge environment. 2006;2006(335):re4. pmid:16705130 doi: 10.1126/stke.3352006re4
[10]
Hayward SD. Viral interactions with the Notch pathway. Seminars in cancer biology. 2004;14(5):387–96. pmid:15288264 doi: 10.1016/j.semcancer.2004.04.018
[11]
Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cellular and molecular life sciences: CMLS. 2009;66(10):1631–46. doi: 10.1007/s00018-009-8668-7. pmid:19165418
[12]
Portal D, Zhou H, Zhao B, Kharchenko PV, Lowry E, Wong L, et al. Epstein-Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(46):18537–42. doi: 10.1073/pnas.1317608110. pmid:24167291
[13]
Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunological reviews. 2014;261(1):102–15. doi: 10.1111/imr.12206. pmid:25123279
[14]
Zhou H, Schmidt SC, Jiang S, Willox B, Bernhardt K, Liang J, et al. Epstein-Barr virus oncoprotein super-enhancers control B cell growth. Cell host & microbe. 2015;17(2):205–16. doi: 10.1016/j.chom.2014.12.013
[15]
Iwafuchi-Doi M, Zaret KS. Pioneer transcription factors in cell reprogramming. Genes & development. 2014;28(24):2679–92. doi: 10.1101/gad.253443.114
[16]
Rothenberg EV. Transcriptional control of early T and B cell developmental choices. Annual review of immunology. 2014;32:283–321. doi: 10.1146/annurev-immunol-032712-100024. pmid:24471430
[17]
Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin conformations. PLoS pathogens. 2011;7(7):e1002180. doi: 10.1371/journal.ppat.1002180. pmid:21829357
[18]
Zhao B, Zou J, Wang H, Johannsen E, Peng CW, Quackenbush J, et al. Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(36):14902–7. doi: 10.1073/pnas.1108892108. pmid:21746931
[19]
McClellan MJ, Wood CD, Ojeniyi O, Cooper TJ, Kanhere A, Arvey A, et al. Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming. PLoS pathogens. 2013;9(9):e1003636. doi: 10.1371/journal.ppat.1003636. pmid:24068937
[20]
Jiang S, Willox B, Zhou H, Holthaus AM, Wang A, Shi TT, et al. Epstein-Barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(1):421–6. doi: 10.1073/pnas.1321704111. pmid:24344258
[21]
Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. Epub 2012/09/08. doi: 10.1038/nature11247. pmid:22955616
[22]
Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? Molecular cell. 2013;49(5):825–37. doi: 10.1016/j.molcel.2013.01.038. pmid:23473601
[23]
Kempkes B, Spitkovsky D, Jansen-Durr P, Ellwart JW, Kremmer E, Delecluse HJ, et al. B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. The EMBO journal. 1995;14(1):88–96. pmid:7828599
[24]
Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Seminars in cancer biology. 2014;26:22–9. doi: 10.1016/j.semcancer.2014.01.003. pmid:24468737
[25]
Trivedi P, Spinsanti P, Cuomo L, Volpe M, Takada K, Frati L, et al. Differential regulation of Epstein-Barr virus (EBV) latent gene expression in Burkitt lymphoma cells infected with a recombinant EBV strain. Journal of virology. 2001;75(10):4929–35. pmid:11312367 doi: 10.1128/jvi.75.10.4929-4935.2001
[26]
Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H, et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(36):14908–13. doi: 10.1073/pnas.1109023108. pmid:21737748
[27]
Schmidt SC, Jiang S, Zhou H, Willox B, Holthaus AM, Kharchenko PV, et al. Epstein-Barr virus nuclear antigen 3A partially coincides with EBNA3C genome-wide and is tethered to DNA through BATF complexes. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(2):554–9. doi: 10.1073/pnas.1422580112. pmid:25540416
[28]
Harth-Hertle ML, Scholz BA, Erhard F, Glaser LV, Dolken L, Zimmer R, et al. Inactivation of intergenic enhancers by EBNA3A initiates and maintains polycomb signatures across a chromatin domain encoding CXCL10 and CXCL9. PLoS pathogens. 2013;9(9):e1003638. doi: 10.1371/journal.ppat.1003638. pmid:24068939
[29]
Tzellos S, Correia PB, Karstegl CE, Cancian L, Cano-Flanagan J, McClellan MJ, et al. A single amino acid in EBNA-2 determines superior B lymphoblastoid cell line growth maintenance by Epstein-Barr virus type 1 EBNA-2. Journal of virology. 2014;88(16):8743–53. doi: 10.1128/JVI.01000-14. pmid:24850736
[30]
Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, et al. The EBNA3 Family of Epstein-Barr Virus Nuclear Proteins Associates with the USP46/USP12 Deubiquitination Complexes to Regulate Lymphoblastoid Cell Line Growth. PLoS pathogens. 2015;11(4):e1004822. doi: 10.1371/journal.ppat.1004822. pmid:25855980
[31]
Miele L. Transcription factor RBPJ/CSL: a genome-wide look at transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(36):14715–6. doi: 10.1073/pnas.1110570108. pmid:21873209
[32]
Yashiro-Ohtani Y, Wang H, Zang C, Arnett KL, Bailis W, Ho Y, et al. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(46):E4946–53. doi: 10.1073/pnas.1407079111. pmid:25369933
[33]
Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS, et al. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(2):705–10. doi: 10.1073/pnas.1315023111. pmid:24374627
[34]
Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG. Dynamic binding of RBPJ is determined by Notch signaling status. Genes & development. 2013;27(9):1059–71. doi: 10.1101/gad.211912.112
[35]
Rowe M, Raithatha S, Shannon-Lowe C. Counteracting effects of cellular Notch and Epstein-Barr virus EBNA2: implications for stromal effects on virus-host interactions. Journal of virology. 2014;88(20):12065–76. doi: 10.1128/JVI.01431-14. pmid:25122803
[36]
Treiber T, Mandel EM, Pott S, Gyory I, Firner S, Liu ET, et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity. 2010;32(5):714–25. doi: 10.1016/j.immuni.2010.04.013. pmid:20451411
[37]
Gyory I, Boller S, Nechanitzky R, Mandel E, Pott S, Liu E, et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes & development. 2012;26(7):668–82. doi: 10.1101/gad.187328.112
[38]
Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE, et al. Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nature communications. 2013;4:2166. doi: 10.1038/ncomms3166. pmid:23863747
[39]
Bossen C, Murre CS, Chang AN, Mansson R, Rodewald HR, Murre C. The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nature immunology. 2015. doi: 10.1038/ni.3170
[40]
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular cell. 2010;38(4):576–89. doi: 10.1016/j.molcel.2010.05.004. pmid:20513432
[41]
Tanigaki K, Han H, Yamamoto N, Tashiro K, Ikegawa M, Kuroda K, et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature immunology. 2002;3(5):443–50. pmid:11967543 doi: 10.1038/ni793
[42]
Lee TI, Johnstone SE, Young RA. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature protocols. 2006;1(2):729–48. pmid:17406303 doi: 10.1038/nprot.2006.98
[43]
Chau CM, Lieberman PM. Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. Journal of virology. 2004;78(22):12308–19. pmid:15507618 doi: 10.1128/jvi.78.22.12308-12319.2004
[44]
Moss T, Leblanc B. DNA-protein interactions principles and protocols. New York: Humana,; 2009. Available from: Connect to full text.
[45]
Lu F, Day L, Gao SJ, Lieberman PM. Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. Journal of virology. 2006;80(11):5273–82. pmid:16699007 doi: 10.1128/jvi.02541-05
Deng Z, Wang Z, Stong N, Plasschaert R, Moczan A, Chen HS, et al. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. The EMBO journal. 2012;31(21):4165–78. doi: 10.1038/emboj.2012.266. pmid:23010778
[48]
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology. 2009;10(3):R25. Epub 2009/03/06. doi: 10.1186/gb-2009-10-3-r25. pmid:19261174
[49]
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. . doi: 10.1038/nature11247. pmid:22955616
[50]
Storey JD, Dai JY, Leek JT. The optimal discovery procedure for large-scale significance testing, with applications to comparative microarray experiments. Biostatistics. 2007;8(2):414–32. pmid:16928955 doi: 10.1093/biostatistics/kxl019