[1] | Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews Microbiology. 2007;5(12):939–51. doi: 10.1038/nrmicro1789 pmid:18007677.
|
[2] | Sahl JW, Gillece JD, Schupp JM, Waddell VG, Driebe EM, Engelthaler DM, et al. Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter. PloS one. 2013;8(1):e54287. doi: 10.1371/journal.pone.0054287 pmid:23365658; PubMed Central PMCID: PMC3554770.
|
[3] | Boo TW, Walsh F, Crowley B. Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. Journal of medical microbiology. 2009;58(Pt 2):209–16. doi: 10.1099/jmm.0.004911–0 pmid:19141738.
|
[4] | Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond MB, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. The Journal of infection. 2012;64(3):282–90. doi: 10.1016/j.jinf.2011.12.008 pmid:22209744.
|
[5] | Wang X, Chen T, Yu R, Lu X, Zong Z. Acinetobacter pittii and Acinetobacter nosocomialis among clinical isolates of the Acinetobacter calcoaceticus-baumannii complex in Sichuan, China. Diagnostic microbiology and infectious disease. 2013;76(3):392–5. doi: 10.1016/j.diagmicrobio.2013.03.020 pmid:23639796.
|
[6] | Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, De E, et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio. 2015;6(2). doi: 10.1128/mBio.00309-15 pmid:25805730; PubMed Central PMCID: PMC4453527.
|
[7] | Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. American journal of infection control. 2010;38(5 Suppl 1):S25–33. doi: 10.1016/j.ajic.2010.04.196 pmid:20569853.
|
[8] | Boll JM, Tucker AT, Klein DR, Beltran AM, Brodbelt JS, Davies BW, et al. Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. mBio. 2015;6(3):e00478–15. doi: 10.1128/mBio.00478-15 pmid:25991684; PubMed Central PMCID: PMC4442142.
|
[9] | Boost MV, Chan J, Shi GS, Cho P. Effect of multipurpose solutions against Acinetobacter carrying QAC genes. Optometry and vision science: official publication of the American Academy of Optometry. 2014;91(3):272–7. doi: 10.1097/OPX.0000000000000177 pmid:24509546.
|
[10] | Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS pathogens. 2012;8(6):e1002758. doi: 10.1371/journal.ppat.1002758 pmid:22685409; PubMed Central PMCID: PMC3369928.
|
[11] | Scott NE, Kinsella RL, Edwards AV, Larsen MR, Dutta S, Saba J, et al. Diversity within the O-linked protein glycosylation systems of Acinetobacter species. Molecular & cellular proteomics: MCP. 2014;13(9):2354–70. doi: 10.1074/mcp.M114.038315 pmid:24917611; PubMed Central PMCID: PMC4159654.
|
[12] | Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E, Schild S, et al. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Molecular microbiology. 2013;89(5):816–30. doi: 10.1111/mmi.12300 pmid:23782391.
|
[13] | Geisinger E, Isberg RR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS pathogens. 2015;11(2):e1004691. doi: 10.1371/journal.ppat.1004691 pmid:25679516; PubMed Central PMCID: PMC4334535.
|
[14] | Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, et al. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS pathogens. 2012;8(12):e1003068. doi: 10.1371/journal.ppat.1003068 pmid:23236280; PubMed Central PMCID: PMC3516566.
|
[15] | Mortensen BL, Rathi S, Chazin WJ, Skaar EP. Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur. Journal of bacteriology. 2014;196(14):2616–26. doi: 10.1128/JB.01650-14 pmid:24816603; PubMed Central PMCID: PMC4097591.
|
[16] | Mortensen BL, Skaar EP. The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Frontiers in cellular and infection microbiology. 2013;3:95. doi: 10.3389/fcimb.2013.00095 pmid:24377089; PubMed Central PMCID: PMC3859900.
|
[17] | Choi CH, Lee JS, Lee YC, Park TI, Lee JC. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC microbiology. 2008;8:216. doi: 10.1186/1471-2180-8-216 pmid:19068136; PubMed Central PMCID: PMC2615016.
|
[18] | Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and immunity. 2009;77(8):3150–60. doi: 10.1128/IAI.00096-09 pmid:19470746; PubMed Central PMCID: PMC2715673.
|
[19] | Lee JS, Choi CH, Kim JW, Lee JC. Acinetobacter baumannii outer membrane protein A induces dendritic cell death through mitochondrial targeting. Journal of microbiology. 2010;48(3):387–92. doi: 10.1007/s12275-010-0155-1 pmid:20571958.
|
[20] | Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology. 2003;149(Pt 12):3473–84. doi: 10.1099/mic.0.26541–0 pmid:14663080.
|
[21] | de Breij A, Gaddy J, van der Meer J, Koning R, Koster A, van den Broek P, et al. CsuA/BABCDE-dependent pili are not involved in the adherence of Acinetobacter baumannii ATCC19606(T) to human airway epithelial cells and their inflammatory response. Research in microbiology. 2009;160(3):213–8. doi: 10.1016/j.resmic.2009.01.002 pmid:19530313.
|
[22] | Harding CM, Nasr MA, Kinsella RL, Scott NE, Foster LJ, Weber BS, et al. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Molecular microbiology. 2015;96(5):1023–41. doi: 10.1111/mmi.12986 pmid:25727908.
|
[23] | Carruthers MD, Nicholson PA, Tracy EN, Munson RS Jr. Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PloS one. 2013;8(3):e59388. doi: 10.1371/journal.pone.0059388 pmid:23527179; PubMed Central PMCID: PMC3602014.
|
[24] | Weber BS, Miyata ST, Iwashkiw JA, Mortensen BL, Skaar EP, Pukatzki S, et al. Genomic and functional analysis of the type VI secretion system in Acinetobacter. PloS one. 2013;8(1):e55142. doi: 10.1371/journal.pone.0055142 pmid:23365692; PubMed Central PMCID: PMC3554697.
|
[25] | Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(30):9442–7. doi: 10.1073/pnas.1502966112 pmid:26170289; PubMed Central PMCID: PMC4522760.
|
[26] | Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 2007;153(Pt 8):2689–99. doi: 10.1099/mic.0.2007/006585-0 pmid:17660433.
|
[27] | Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infection and immunity. 2011;79(4):1512–25. doi: 10.1128/IAI.01218-10 pmid:21300775; PubMed Central PMCID: PMC3067527.
|
[28] | Repizo GD, Gagne S, Foucault-Grunenwald ML, Borges V, Charpentier X, Limansky AS, et al. Differential Role of the T6SS in Acinetobacter baumannii Virulence. PloS one. 2015;10(9):e0138265. doi: 10.1371/journal.pone.0138265 pmid:26401654; PubMed Central PMCID: PMC4581634.
|
[29] | Bentancor LV, Camacho-Peiro A, Bozkurt-Guzel C, Pier GB, Maira-Litran T. Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii. Journal of bacteriology. 2012;194(15):3950–60. doi: 10.1128/JB.06769-11 pmid:22609912; PubMed Central PMCID: PMC3416510.
|
[30] | Liu CC, Kuo HY, Tang CY, Chang KC, Liou ML. Prevalence and mapping of a plasmid encoding a type IV secretion system in Acinetobacter baumannii. Genomics. 2014;104(3):215–23. doi: 10.1016/j.ygeno.2014.07.011 pmid:25072866.
|
[31] | Hu H, Hu Y, Pan Y, Liang H, Wang H, Wang X, et al. Novel plasmid and its variant harboring both a bla(NDM-1) gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrobial agents and chemotherapy. 2012;56(4):1698–702. doi: 10.1128/AAC.06199-11 pmid:22290961; PubMed Central PMCID: PMC3318331.
|
[32] | Wang N, Ozer EA, Mandel MJ, Hauser AR. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio. 2014;5(3):e01163–14. doi: 10.1128/mBio.01163-14 pmid:24895306; PubMed Central PMCID: PMC4049102.
|
[33] | Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC genomics. 2014;15:1020. doi: 10.1186/1471-2164-15-1020 pmid:25422040; PubMed Central PMCID: PMC4256060.
|
[34] | Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nature reviews Microbiology. 2012;10(5):336–51. doi: 10.1038/nrmicro2762 pmid:22466878; PubMed Central PMCID: PMC3705712.
|
[35] | Sandkvist M. Type II secretion and pathogenesis. Infection and immunity. 2001;69(6):3523–35. doi: 10.1128/IAI.69.6.3523–3535.2001 pmid:11349009; PubMed Central PMCID: PMC98326.
|
[36] | Campos M, Cisneros DA, Nivaskumar M, Francetic O. The type II secretion system—a dynamic fiber assembly nanomachine. Research in microbiology. 2013;164(6):545–55. doi: 10.1016/j.resmic.2013.03.013 pmid:23542426.
|
[37] | Rondelet A, Condemine G. Type II secretion: the substrates that won't go away. Research in microbiology. 2013;164(6):556–61. doi: 10.1016/j.resmic.2013.03.005 pmid:23538405.
|
[38] | Nivaskumar M, Francetic O. Type II secretion system: a magic beanstalk or a protein escalator. Biochimica et biophysica acta. 2014;1843(8):1568–77. doi: 10.1016/j.bbamcr.2013.12.020 pmid:24389250.
|
[39] | Sikora AE. Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches. PLoS pathogens. 2013;9(2):e1003126. doi: 10.1371/journal.ppat.1003126 pmid:23436993; PubMed Central PMCID: PMC3578741.
|
[40] | Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. The Journal of biological chemistry. 2011;286(19):16555–66. doi: 10.1074/jbc.M110.211078 pmid:21385872; PubMed Central PMCID: PMC3089498.
|
[41] | DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(50):19146–51. doi: 10.1073/pnas.0608279103 pmid:17148602; PubMed Central PMCID: PMC1748190.
|
[42] | Cianciotto NP. Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future microbiology. 2009;4(7):797–805. doi: 10.2217/fmb.09.53 pmid:19722835; PubMed Central PMCID: PMC2754693.
|
[43] | Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(10):7066–71. doi: 10.1073/pnas.092152899 pmid:12011463; PubMed Central PMCID: PMC124529.
|
[44] | Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic acids research. 2011;39(Database issue):D225–9. doi: 10.1093/nar/gkq1189 pmid:21109532; PubMed Central PMCID: PMC3013737.
|
[45] | Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr. Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio. 2013;4(4). doi: 10.1128/mBio.00360-13 pmid:23919995; PubMed Central PMCID: PMC3735195.
|
[46] | Chami M, Guilvout I, Gregorini M, Remigy HW, Muller SA, Valerio M, et al. Structural insights into the secretin PulD and its trypsin-resistant core. The Journal of biological chemistry. 2005;280(45):37732–41. doi: 10.1074/jbc.M504463200 pmid:16129681.
|
[47] | Reichow SL, Korotkov KV, Hol WG, Gonen T. Structure of the cholera toxin secretion channel in its closed state. Nature structural & molecular biology. 2010;17(10):1226–32. doi: 10.1038/nsmb.1910 pmid:20852644; PubMed Central PMCID: PMC2950906.
|
[48] | Haft DH, Varghese N. GlyGly-CTERM and rhombosortase: a C-terminal protein processing signal in a many-to-one pairing with a rhomboid family intramembrane serine protease. PloS one. 2011;6(12):e28886. doi: 10.1371/journal.pone.0028886 pmid:22194940; PubMed Central PMCID: PMC3237569.
|
[49] | Tilley D, Law R, Warren S, Samis JA, Kumar A. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation. FEMS microbiology letters. 2014;356(1):53–61. doi: 10.1111/1574-6968.12496 pmid:24910020.
|
[50] | Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic acids research. 2014;42(Database issue):D503–9. doi: 10.1093/nar/gkt953 pmid:24157837; PubMed Central PMCID: PMC3964991.
|
[51] | Kok RG, van Thor JJ, Nugteren-Roodzant IM, Vosman B, Hellingwerf KJ. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase. Journal of bacteriology. 1995;177(11):3295–307. pmid:7768830; PubMed Central PMCID: PMC177023. doi: 10.1111/j.1365-2958.1995.tb02351.x
|
[52] | Kok RG, van Thor JJ, Nugteren-Roodzant IM, Brouwer MB, Egmond MR, Nudel CB, et al. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Molecular microbiology. 1995;15(5):803–18. pmid:7596283. doi: 10.1111/j.1365-2958.1995.tb02351.x
|
[53] | Fischer M, Pleiss J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic acids research. 2003;31(1):319–21. pmid:12520012; PubMed Central PMCID: PMC165462. doi: 10.1093/nar/gkg015
|
[54] | Hunger M, Schmucker R, Kishan V, Hillen W. Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene. 1990;87(1):45–51. pmid:2185139. doi: 10.1016/0378-1119(90)90494-c
|
[55] | Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. Domain enhanced lookup time accelerated BLAST. Biology direct. 2012;7:12. doi: 10.1186/1745-6150-7-12 pmid:22510480; PubMed Central PMCID: PMC3438057.
|
[56] | Lotz GP, Lin H, Harst A, Obermann WM. Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. The Journal of biological chemistry. 2003;278(19):17228–35. doi: 10.1074/jbc.M212761200 pmid:12604615.
|
[57] | Madan B, Mishra P. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Applied microbiology and biotechnology. 2010;85(3):597–604. doi: 10.1007/s00253-009-2131-4 pmid:19629472.
|
[58] | Mobarak-Qamsari E, Kasra-Kermanshahi R, Moosavi-Nejad Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iranian journal of microbiology. 2011;3(2):92–8. pmid:22347589; PubMed Central PMCID: PMC3279805.
|
[59] | Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr., Mylonakis E. Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrobial agents and chemotherapy. 2009;53(6):2605–9. doi: 10.1128/AAC.01533-08 pmid:19332683; PubMed Central PMCID: PMC2687231.
|
[60] | Harding CR, Schroeder GN, Collins JW, Frankel G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. Journal of visualized experiments: JoVE. 2013;(81):e50964. doi: 10.3791/50964 pmid:24299965; PubMed Central PMCID: PMC3923569.
|
[61] | McConnell MJ, Actis L, Pachon J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS microbiology reviews. 2013;37(2):130–55. doi: 10.1111/j.1574-6976.2012.00344.x pmid:22568581.
|
[62] | Noto MJ, Boyd KL, Burns WJ, Varga MG, Peek RM Jr., Skaar EP. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection. Infection and immunity. 2015;83(10):4134–41. doi: 10.1128/IAI.00410-15 pmid:26238713; PubMed Central PMCID: PMC4567622.
|
[63] | Frenken LG, de Groot A, Tommassen J, Verrips CT. Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae. Molecular microbiology. 1993;9(3):591–9. pmid:8412705. doi: 10.1111/j.1365-2958.1993.tb01719.x
|
[64] | Frenken LG, Bos JW, Visser C, Muller W, Tommassen J, Verrips CT. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Molecular microbiology. 1993;9(3):579–89. pmid:8412704. doi: 10.1111/j.1365-2958.1993.tb01718.x
|
[65] | Ogierman MA, Fallarino A, Riess T, Williams SG, Attridge SR, Manning PA. Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. Journal of bacteriology. 1997;179(22):7072–80. pmid:9371455; PubMed Central PMCID: PMCPMC179649.
|
[66] | Pauwels K, Lustig A, Wyns L, Tommassen J, Savvides SN, Van Gelder P. Structure of a membrane-based steric chaperone in complex with its lipase substrate. Nature structural & molecular biology. 2006;13(4):374–5. doi: 10.1038/nsmb1065 pmid:16518399.
|
[67] | El Khattabi M, Van Gelder P, Bitter W, Tommassen J. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone. The Journal of biological chemistry. 2000;275(35):26885–91. doi: 10.1074/jbc.M003258200 pmid:10859310.
|
[68] | Burtnick MN, Brett PJ, DeShazer D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infection and immunity. 2014;82(8):3214–26. doi: 10.1128/IAI.01739-14 pmid:24866793; PubMed Central PMCID: PMC4136222.
|
[69] | Chihara-Siomi M, Yoshikawa K, Oshima-Hirayama N, Yamamoto K, Sogabe Y, Nakatani T, et al. Purification, molecular cloning, and expression of lipase from Pseudomonas aeruginosa. Archives of biochemistry and biophysics. 1992;296(2):505–13. pmid:1632642. doi: 10.1016/0003-9861(92)90604-u
|
[70] | Oshima-Hirayama N, Yoshikawa K, Nishioka T, Oda J. Lipase from Pseudomonas aeruginosa. Production in Escherichia coli and activation in vitro with a protein from the downstream gene. European journal of biochemistry / FEBS. 1993;215(2):239–46. pmid:8344292. doi: 10.1111/j.1432-1033.1993.tb18028.x
|
[71] | Tommassen J, Filloux A, Bally M, Murgier M, Lazdunski A. Protein secretion in Pseudomonas aeruginosa. FEMS microbiology reviews. 1992;9(1):73–90. pmid:1389315. doi: 10.1111/j.1574-6968.1992.tb05824.x
|
[72] | Martinez A, Ostrovsky P, Nunn DN. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Molecular microbiology. 1999;34(2):317–26. pmid:10564475. doi: 10.1046/j.1365-2958.1999.01601.x
|
[73] | Passmore IJ, Nishikawa K, Lilley KS, Bowden SD, Chung JC, Welch M. Mep72, a metzincin protease that is preferentially secreted by biofilms of Pseudomonas aeruginosa. Journal of bacteriology. 2015;197(4):762–73. doi: 10.1128/JB.02404-14 pmid:25488299; PubMed Central PMCID: PMC4334185.
|
[74] | Rompikuntal PK, Vdovikova S, Duperthuy M, Johnson TL, Ahlund M, Lundmark R, et al. Outer Membrane Vesicle-Mediated Export of Processed PrtV Protease from Vibrio cholerae. PloS one. 2015;10(7):e0134098. doi: 10.1371/journal.pone.0134098 pmid:26222047; PubMed Central PMCID: PMC4519245.
|
[75] | Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. Journal of bacteriology. 2007;189(23):8484–95. doi: 10.1128/JB.00583-07 pmid:17890307; PubMed Central PMCID: PMC2168955.
|
[76] | Johnson TL, Waack U, Smith S, Mobley H, Sandkvist M. Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. Journal of bacteriology. 2015. doi: 10.1128/JB.00622-15 pmid:26668261.
|
[77] | Pelicic V. Type IV pili: e pluribus unum? Molecular microbiology. 2008;68(4):827–37. doi: 10.1111/j.1365-2958.2008.06197.x pmid:18399938.
|
[78] | Han X, Kennan RM, Parker D, Davies JK, Rood JI. Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. Journal of bacteriology. 2007;189(14):5022–33. doi: 10.1128/JB.00138-07 pmid:17513472; PubMed Central PMCID: PMC1951885.
|
[79] | Nunn DN, Lory S. Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(1):47–51. pmid:1309616; PubMed Central PMCID: PMC48172. doi: 10.1073/pnas.89.1.47
|
[80] | Marsh JW, Taylor RK. Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Molecular microbiology. 1998;29(6):1481–92. pmid:9781884. doi: 10.1046/j.1365-2958.1998.01031.x
|
[81] | Liles MR, Viswanathan VK, Cianciotto NP. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infection and immunity. 1998;66(4):1776–82. pmid:9529113; PubMed Central PMCID: PMC108120.
|
[82] | Liles MR, Edelstein PH, Cianciotto NP. The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Molecular microbiology. 1999;31(3):959–70. pmid:10048038. doi: 10.1046/j.1365-2958.1999.01239.x
|
[83] | El Khattabi M, Ockhuijsen C, Bitter W, Jaeger KE, Tommassen J. Specificity of the lipase-specific foldases of Gram-negative bacteria and the role of the membrane anchor. Molecular & general genetics: MGG. 1999;261(4–5):770–6. pmid:10394914. doi: 10.1007/s004380050020
|
[84] | Whitchurch CB, Mattick JS. Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Molecular microbiology. 1994;13(6):1079–91. pmid:7854122. doi: 10.1111/j.1365-2958.1994.tb00499.x
|
[85] | Maraki S, Sarchianaki E, Barbagadakis S. Myroides odoratimimus soft tissue infection in an immunocompetent child following a pig bite: case report and literature review. The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases. 2012;16(4):390–2. doi: 10.1016/j.bjid.2012.06.004 pmid:22846131.
|
[86] | Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings / International Conference on Intelligent Systems for Molecular Biology; ISMB International Conference on Intelligent Systems for Molecular Biology. 1998;6:175–82. pmid:9783223.
|
[87] | Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology. 2001;305(3):567–80. doi: 10.1006/jmbi.2000.4315 pmid:11152613.
|
[88] | Feldman MF, Cornelis GR. The multitalented type III chaperones: all you can do with 15 kDa. FEMS microbiology letters. 2003;219(2):151–8. pmid:12620614. doi: 10.1016/s0378-1097(03)00042-9
|
[89] | Elhosseiny NM, Amin MA, Yassin AS, Attia AS. Acinetobacter baumannii universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. International journal of medical microbiology: IJMM. 2015;305(1):114–23. doi: 10.1016/j.ijmm.2014.11.008 pmid:25466824.
|