全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger

DOI: 10.1371/journal.ppat.1005373

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

References

[1]  Feldmann H, Geisbert TW (2011) Ebola haemorrhagic fever. Lancet 377: 849–862. doi: 10.1016/S0140-6736(10)60667-8. pmid:21084112
[2]  Choi WY, Hong KJ, Hong JE, Lee WJ (2015) Progress of vaccine and drug development for Ebola preparedness. Clin Exp Vaccine Res 4: 11–16. doi: 10.7774/cevr.2015.4.1.11. pmid:25648233
[3]  Boulant S, Stanifer M, Kural C, Cureton DK, Massol R, et al. (2013) Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin-Darby canine kidney cells. Mol Biol Cell 24: 1196–1207. doi: 10.1091/mbc.E12-12-0852. pmid:23427267
[4]  Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100: 9280–9285. pmid:12883000 doi: 10.1073/pnas.0832269100
[5]  Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137: 433–444. doi: 10.1016/j.cell.2009.02.046. pmid:19410541
[6]  Nour AM, Li Y, Wolenski J, Modis Y (2013) Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog 9: e1003585. doi: 10.1371/journal.ppat.1003585. pmid:24039574
[7]  Brecher M, Schornberg KL, Delos SE, Fusco ML, Saphire EO, et al. (2012) Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol 86: 364–372. doi: 10.1128/JVI.05708-11. pmid:22031933
[8]  Bar S, Takada A, Kawaoka Y, Alizon M (2006) Detection of cell-cell fusion mediated by Ebola virus glycoproteins. J Virol 80: 2815–2822. pmid:16501090 doi: 10.1128/jvi.80.6.2815-2822.2006
[9]  Dube D, Brecher MB, Delos SE, Rose SC, Park EW, et al. (2009) The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding. J Virol 83: 2883–2891. doi: 10.1128/JVI.01956-08. pmid:19144707
[10]  Takada A, Robison C, Goto H, Sanchez A, Murti KG, et al. (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94: 14764–14769. pmid:9405687 doi: 10.1073/pnas.94.26.14764
[11]  Wool-Lewis RJ, Bates P (1999) Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 73: 1419–1426. pmid:9882347
[12]  Bhattacharyya S, Hope TJ, Young JA (2011) Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 419: 1–9. doi: 10.1016/j.virol.2011.07.018. pmid:21855102
[13]  Brindley MA, Hughes L, Ruiz A, McCray PB Jr., Sanchez A, et al. (2007) Ebola virus glycoprotein 1: identification of residues important for binding and postbinding events. J Virol 81: 7702–7709. pmid:17475648 doi: 10.1128/jvi.02433-06
[14]  Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, et al. (2011) Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477: 340–343. doi: 10.1038/nature10348. pmid:21866103
[15]  C?té M, Misasi J, Ren T, Bruchez A, Lee K, et al. (2011) Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477: 344–348. doi: 10.1038/nature10380. pmid:21866101
[16]  Hood CL, Abraham J, Boyington JC, Leung K, Kwong PD, et al. (2010) Biochemical and structural characterization of cathepsin L-processed Ebola virus glycoprotein: implications for viral entry and immunogenicity. J Virol 84: 2972–2982. doi: 10.1128/JVI.02151-09. pmid:20053739
[17]  Manicassamy B, Wang J, Jiang H, Rong L (2005) Comprehensive analysis of ebola virus GP1 in viral entry. J Virol 79: 4793–4805. pmid:15795265 doi: 10.1128/jvi.79.8.4793-4805.2005
[18]  Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, et al. (2012) Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 31: 1947–1960. doi: 10.1038/emboj.2012.53. pmid:22395071
[19]  Wang J, Manicassamy B, Caffrey M, Rong L (2011) Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry. Virol Sin 26: 156–170. doi: 10.1007/s12250-011-3194-9. pmid:21667336
[20]  Bale S, Liu T, Li S, Wang Y, Abelson D, et al. (2011) Ebola virus glycoprotein needs an additional trigger, beyond proteolytic priming for membrane fusion. PLoS Negl Trop Dis 5: e1395. doi: 10.1371/journal.pntd.0001395. pmid:22102923
[21]  Cosset FL, Lavillette D (2011) Cell entry of enveloped viruses. Adv Genet 73: 121–183. doi: 10.1016/B978-0-12-380860-8.00004-5. pmid:21310296
[22]  Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, et al. (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6442–6447. pmid:9658086
[23]  Martinez O, Johnson J, Manicassamy B, Rong L, Olinger GG, et al. (2010) Zaire Ebola virus entry into human dendritic cells is insensitive to cathepsin L inhibition. Cell Microbiol 12: 148–157. doi: 10.1111/j.1462-5822.2009.01385.x. pmid:19775255
[24]  Kaletsky RL, Simmons G, Bates P (2007) Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol 81: 13378–13384. pmid:17928356 doi: 10.1128/jvi.01170-07
[25]  Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, et al. (2006) Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80: 4174–4178. pmid:16571833 doi: 10.1128/jvi.80.8.4174-4178.2006
[26]  Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM (2005) Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308: 1643–1645. pmid:15831716 doi: 10.1126/science.1110656
[27]  Gregory SM, Harada E, Liang B, Delos SE, White JM, et al. (2011) Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. Proc Natl Acad Sci U S A 108: 11211–11216. doi: 10.1073/pnas.1104760108. pmid:21690393
[28]  Markosyan RM, Melikyan GB, Cohen FS (2001) Evolution of intermediates of influenza virus hemagglutinin-mediated fusion revealed by kinetic measurements of pore formation. Biophys J 80: 812–821. pmid:11159448 doi: 10.1016/s0006-3495(01)76060-2
[29]  Melikyan GB, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM, et al. (2000) Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 151: 413–423. pmid:11038187 doi: 10.1083/jcb.151.2.413
[30]  Chernomordik LV, Frolov VA, Leikina E, Bronk P, Zimmerberg J (1998) The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 140: 1369–1382. pmid:9508770 doi: 10.1083/jcb.140.6.1369
[31]  Melikyan GB, Brener SA, Ok DC, Cohen FS (1997) Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol 136: 995–1005. pmid:9060465 doi: 10.1083/jcb.136.5.995
[32]  Zavorotinskaya T, Qian Z, Franks J, Albritton LM (2004) A point mutation in the binding subunit of a retroviral envelope protein arrests virus entry at hemifusion. J Virol 78: 473–481. pmid:14671127 doi: 10.1128/jvi.78.1.473-481.2004
[33]  Cote M, Zheng YM, Albritton LM, Liu SL (2011) Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection. Virology 421: 173–183. doi: 10.1016/j.virol.2011.09.022. pmid:22018783
[34]  Neufeld EB, Wastney M, Patel S, Suresh S, Cooney AM, et al. (1999) The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem 274: 9627–9635. pmid:10092649 doi: 10.1074/jbc.274.14.9627
[35]  Haines KM, Vande Burgt NH, Francica JR, Kaletsky RL, Bates P (2012) Chinese hamster ovary cell lines selected for resistance to ebolavirus glycoprotein mediated infection are defective for NPC1 expression. Virology 432: 20–28. doi: 10.1016/j.virol.2012.05.018. pmid:22726751
[36]  Delos SE, La B, Gilmartin A, White JM (2010) Studies of the "chain reversal regions" of the avian sarcoma/leukosis virus (ASLV) and ebolavirus fusion proteins: analogous residues are important, and a His residue unique to EnvA affects the pH dependence of ASLV entry. J Virol 84: 5687–5694. doi: 10.1128/JVI.02583-09. pmid:20335266
[37]  Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, et al. (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454: 177–182. doi: 10.1038/nature07082. pmid:18615077
[38]  Cote M, Zheng YM, Albritton LM, Liu SL (2008) Fusogenicity of Jaagsiekte sheep retrovirus envelope protein is dependent on low pH and is enhanced by cytoplasmic tail truncations. J Virol 82: 2543–2554. pmid:18094165 doi: 10.1128/jvi.01852-07
[39]  Pak CC, Krumbiegel M, Blumenthal R (1994) Intermediates in influenza virus PR/8 haemagglutinin-induced membrane fusion. J Gen Virol 75 (Pt 2): 395–399. pmid:8113761 doi: 10.1099/0022-1317-75-2-395
[40]  Turk B, Turk V, Turk D (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem 378: 141–150. pmid:9165064
[41]  De Clercq E (2015) Ebola virus (EBOV) infection: Therapeutic strategies. Biochem Pharmacol 93: 1–10. doi: 10.1016/j.bcp.2014.11.008. pmid:25481298
[42]  Wool-Lewis RJ, Bates P (1998) Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 72: 3155–3160. pmid:9525641
[43]  Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, et al. (2015) Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347: 995–998. doi: 10.1126/science.1258758. pmid:25722412
[44]  Simmons JA, D'Souza R.S., Rua M., Galione A., Casanova J.E., and White J.M. (2015) The Ebola virus Glycoprotein Directs Fusion Through NPC1+ Endolysosomes. J Virol. doi: 10.1128/jvi.01828-15
[45]  Mingo RM, Simmons JA, Shoemaker CJ, Nelson EA, Schornberg KL, et al. (2015) Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J Virol 89: 2931–2943. doi: 10.1128/JVI.03398-14. pmid:25552710
[46]  Ellens H, Bentz J, Mason D, Zhang F, White JM (1990) Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry 29: 9697–9707. pmid:2271610 doi: 10.1021/bi00493a027
[47]  Plonsky I, Zimmerberg J (1996) The initial fusion pore induced by baculovirus GP64 is large and forms quickly. J Cell Biol 135: 1831–1839. pmid:8991094 doi: 10.1083/jcb.135.6.1831
[48]  Pager CT, Craft WW Jr., Patch J, Dutch RE (2006) A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 346: 251–257. pmid:16460775 doi: 10.1016/j.virol.2006.01.007
[49]  Pager CT, Dutch RE (2005) Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. Journal of Virology 79: 12714–12720. pmid:16188974 doi: 10.1128/jvi.79.20.12714-12720.2005
[50]  Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, et al. (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 102: 11876–11881. pmid:16081529 doi: 10.1073/pnas.0505577102
[51]  Diederich S, Moll M, Klenk HD, Maisner A (2005) The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 280: 29899–29903. pmid:15961384 doi: 10.1074/jbc.m504598200
[52]  Pager CT, Wurth MA, Dutch RE (2004) Subcellular localization and calcium and pH requirements for proteolytic processing of the Hendra virus fusion protein. J Virol 78: 9154–9163. pmid:15308711 doi: 10.1128/jvi.78.17.9154-9163.2004
[53]  Subbiah M, Khattar SK, Collins PL, Samal SK (2011) Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 2 increase cleavability and syncytium formation but do not increase viral virulence in chickens. J Virol 85: 5394–5405. doi: 10.1128/JVI.02696-10. pmid:21450835
[54]  Russell CJ (2014) Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology. Curr Top Microbiol Immunol 385: 93–116. doi: 10.1007/82_2014_393. pmid:25007844
[55]  McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28: 181–204. pmid:10410800 doi: 10.1146/annurev.biophys.28.1.181
[56]  Linebaugh BE, Sameni M, Day NA, Sloane BF, Keppler D (1999) Exocytosis of active cathepsin B enzyme activity at pH 7.0, inhibition and molecular mass. Eur J Biochem 264: 100–109. pmid:10447678 doi: 10.1046/j.1432-1327.1999.00582.x
[57]  Lockwood TD (2002) Cathepsin B responsiveness to glutathione and lipoic acid redox. Antioxid Redox Signal 4: 681–691. pmid:12230881 doi: 10.1089/15230860260220193
[58]  Pillay CS, Dennison C (2002) Cathepsin B stability, but not activity, is affected in cysteine:cystine redox buffers. Biol Chem 383: 1199–1204. pmid:12437106 doi: 10.1515/bc.2002.132
[59]  White JM, Schornberg KL (2012) A new player in the puzzle of filovirus entry. Nat Rev Microbiol 10: 317–322. doi: 10.1038/nrmicro2764. pmid:22491356
[60]  Rozhin J, Robinson D, Stevens MA, Lah TT, Honn KV, et al. (1987) Properties of a plasma membrane-associated cathepsin B-like cysteine proteinase in metastatic B16 melanoma variants. Cancer Res 47: 6620–6628. pmid:2824039
[61]  Harrison JS, Higgins CD, Chandran K, Lai JR (2011) Designed protein mimics of the Ebola virus glycoprotein GP2 alpha-helical bundle: stability and pH effects. Protein Sci 20: 1587–1596. doi: 10.1002/pro.688. pmid:21739501
[62]  Markosyan RM, Cohen FS, Melikyan GB (2003) HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol Biol Cell 14: 926–938. pmid:12631714 doi: 10.1091/mbc.e02-09-0573
[63]  Bale S, Dias JM, Fusco ML, Hashiguchi T, Wong AC, et al. (2012) Structural basis for differential neutralization of ebolaviruses. Viruses 4: 447–470. doi: 10.3390/v4040447. pmid:22590681
[64]  Markosyan RM, Cohen FS (2013) The transmembrane domain and acidic lipid flip-flop regulates voltage-dependent fusion mediated by class II and III viral proteins. PLoS One 8: e76174. doi: 10.1371/journal.pone.0076174. pmid:24124539
[65]  Samsonov AV, Chatterjee PK, Razinkov VI, Eng CH, Kielian M, et al. (2002) Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. J Virol 76: 12691–12702. pmid:12438595 doi: 10.1128/jvi.76.24.12691-12702.2002
[66]  C?té M, Kucharski TJ, Liu S- L (2008) Enzootic nasal tumor virus envelope requires a very acidic pH for fusion activation and infection. J Virol 82: 9023–9034. doi: 10.1128/JVI.00648-08. pmid:18632865
[67]  Narayan S, Barnard RJ, Young JA (2003) Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J Virol 77: 1977–1983. pmid:12525631 doi: 10.1128/jvi.77.3.1977-1983.2003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133