The Epstein-Barr virus (EBV) infects and transforms B-lymphocytes with high efficiency. This process requires expression of the viral latent proteins and of the 3 miR-BHRF1 microRNAs. Here we show that B-cells infected by a virus that lacks these non-coding RNAs (Δ123) grew more slowly between day 5 and day 20, relative to wild type controls. This effect could be ascribed to a reduced S phase entry combined with a moderately increased apoptosis rate. Whilst the first phenotypic trait was consistent with an enhanced PTEN expression in B-cells infected with Δ123, the second could be explained by very low BHRF1 protein and RNA levels in the same cells. Indeed, B-cells infected either by a recombinant virus that lacks the BHRF1 protein, a viral bcl-2 homolog, or by Δ123 underwent a similar degree of apoptosis, whereas knockouts of both BHRF1 microRNAs and protein proved transformation-incompetent. We find that that the miR-BHRF1-3 seed regions, and to a lesser extent those of miR-BHRF1-2 mediate these stimulatory effects. After this critical period, B-cells infected with the Δ123 mutant recovered a normal growth rate and became more resistant to provoked apoptosis. This resulted from an enhanced BHRF1 protein expression relative to cells infected with wild type viruses and correlated with decreased p27 expression, two pro-oncogenic events. The upregulation of BHRF1 can be explained by the observation that large BHRF1 mRNAs are the source of BHRF1 protein but are destroyed following BHRF1 microRNA processing, in particular of miR-BHRF1-2. The BHRF1 microRNAs are unlikely to directly target p27 but their absence may facilitate the selection of B-cells that express low levels of this protein. Thus, the BHRF1 microRNAs allowed a time-restricted expression of the BHRF1 protein to innocuously expand the virus B-cell reservoir during the first weeks post-infection without increasing long-term immune pressure.
References
[1]
Zur Hausen H. The search for infectious causes of human cancers: where and why. Virology. 2009;392(1):1–10. doi: 10.1016/j.virol.2009.06.001. pmid:19720205
Delecluse HJ, Feederle R, O'Sullivan B, Taniere P. Epstein Barr virus-associated tumours: an update for the attention of the working pathologist. J Clin Pathol. 2007;60(12):1358–64. Epub 2007/09/18. doi: 10.1136/jcp.2006.044586. pmid:17873116
[4]
Seto E, Moosmann A, Gromminger S, Walz N, Grundhoff A, Hammerschmidt W. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 2010;6(8):e1001063. Epub 2010/09/03. doi: 10.1371/journal.ppat.1001063. pmid:20808852
[5]
Feederle R, Linnstaedt SD, Bannert H, Lips H, Bencun M, Cullen BR, et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 2011;7(2):e1001294. Epub 2011/03/08. doi: 10.1371/journal.ppat.1001294. pmid:21379335
[6]
Feederle R, Haar J, Bernhardt K, Linnstaedt SD, Bannert H, Lips H, et al. The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol. 2011;85(19):9801–10. Epub 2011/07/15. doi: 10.1128/jvi.05100-11. pmid:21752900
[7]
Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJ, et al. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol. 2013;87(10):5437–46. doi: 10.1128/JVI.00281-13. pmid:23468485
[8]
Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986;47(1):19–28. doi: 10.1016/0092-8674(86)90362-4
[9]
Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A. 1993;90(18):8479–83. Epub 1993/09/15. pmid:8397406 doi: 10.1073/pnas.90.18.8479
[10]
Kelly G, Bell A, Rickinson A. Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nature medicine. 2002;8(10):1098–104. doi: 10.1038/nm758. pmid:12219084
[11]
Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A, Bell AI, et al. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog. 2009;5(3):e1000341. Epub 2009/03/14. doi: 10.1371/journal.ppat.1000341. pmid:19283066
[12]
Altmann M, Hammerschmidt W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 2005;3(12):e404. Epub 2005/11/10. doi: 10.1371/journal.pbio.0030404. pmid:16277553
[13]
Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB. Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 2006;103(40):14935–40. Epub 2006/09/27. doi: 10.1073/pnas.0509988103. pmid:17001014
[14]
Shannon-Lowe C, Baldwin G, Feederle R, Bell A, Rickinson A, Delecluse HJ. Epstein-Barr virus-induced B-cell transformation: quantitating events from virus binding to cell outgrowth. J Gen Virol. 2005;86(Pt 11):3009–19. Epub 2005/10/18. doi: 10.1099/vir.0.81153-0. pmid:16227222
[15]
Falk MH, Hultner L, Milner A, Gregory CD, Bornkamm GW. Irradiated fibroblasts protect Burkitt lymphoma cells from apoptosis by a mechanism independent of bcl-2. Int J Cancer. 1993;55(3):485–91. pmid:8397166 doi: 10.1002/ijc.2910550327
[16]
Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, et al. Identification of virus-encoded microRNAs. Science. 2004;304(5671):734–6. Epub 2004/05/01. doi: 10.1126/science.1096781. pmid:15118162
[17]
Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 2012;8(1):e1002484. Epub 2012/02/01. doi: 10.1371/journal.ppat.1002484. pmid:22291592
[18]
Arcaro A, Wymann MP. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. The Biochemical journal. 1993;296 (Pt 2):297–301. pmid:8257416 doi: 10.1042/bj2960297
[19]
Xing L, Kieff E. Epstein-Barr virus BHRF1 micro- and stable RNAs during latency III and after induction of replication. J Virol. 2007;81(18):9967–75. Epub 2007/07/13. doi: 10.1128/JVI.02244-06. pmid:17626073
[20]
Xing L, Kieff E. Splicing and Drosha cleavage coordinately control the selective expression of microRNAs from Epstein-Barr virus Latency III BHRF1 RNA. J Virol. 2011. Epub 2011/06/24. doi: 10.1128/jvi.00336-11
[21]
Amoroso R, Fitzsimmons L, Thomas WA, Kelly GL, Rowe M, Bell AI. Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol. 2011;85(2):996–1010. Epub 2010/11/12. doi: 10.1128/JVI.01528-10. pmid:21068248
[22]
Pratt ZL, Kuzembayeva M, Sengupta S, Sugden B. The microRNAs of Epstein-Barr Virus are expressed at dramatically differing levels among cell lines. Virology. 2009;386(2):387–97. Epub 2009/02/17. doi: 10.1016/j.virol.2009.01.006. pmid:19217135
[23]
Sawai H, Domae N. Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochemical and biophysical research communications. 2011;411(3):569–73. doi: 10.1016/j.bbrc.2011.06.186. pmid:21763280
[24]
Brennan P, Mehl AM, Jones M, Rowe M. Phosphatidylinositol 3-kinase is essential for the proliferation of lymphoblastoid cells. Oncogene. 2002;21(8):1263–71. doi: 10.1038/sj.onc.1205182. pmid:11850846
[25]
Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J, et al. MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. Embo J. 2013;32(17):2377–91. doi: 10.1038/emboj.2013.178. pmid:23921550
[26]
Zhu H, Han C, Lu D, Wu T. miR-17-92 cluster promotes cholangiocarcinoma growth: evidence for PTEN as downstream target and IL-6/Stat3 as upstream activator. Am J Pathol. 2014;184(10):2828–39. doi: 10.1016/j.ajpath.2014.06.024. pmid:25239565
[27]
Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19. doi: 10.1038/nrg1879. pmid:16847462
[28]
Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, et al. 'See-saw' expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature. 2013;495(7439):103–6. doi: 10.1038/nature11890. pmid:23395958
[29]
Austin PJ, Flemington E, Yandava CN, Strominger JL, Speck SH. Complex transcription of the Epstein-Barr virus BamHI fragment H rightward open reading frame 1 (BHRF1) in latently and lytically infected B lymphocytes. Proc Natl Acad Sci U S A. 1988;85(11):3678–82. pmid:2836854 doi: 10.1073/pnas.85.11.3678
[30]
Pfitzner AJ, Tsai EC, Strominger JL, Speck SH. Isolation and characterization of cDNA clones corresponding to transcripts from the BamHI H and F regions of the Epstein-Barr virus genome. J Virol. 1987;61(9):2902–9. pmid:3039177
[31]
Cao S, Strong MJ, Wang X, Moss WN, Concha M, Lin Z, et al. High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol. 2015;89(1):713–29. doi: 10.1128/JVI.02570-14. pmid:25355872
[32]
Pratt ZL, Zhang J, Sugden B. The latent membrane protein 1 (LMP1) oncogene of Epstein-Barr virus can simultaneously induce and inhibit apoptosis in B cells. J Virol. 2012;86(8):4380–93. doi: 10.1128/JVI.06966-11. pmid:22318153
[33]
Price AM, Tourigny JP, Forte E, Salinas RE, Dave SS, Luftig MA. Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-kappaB activation. J Virol. 2012;86(20):11096–106. doi: 10.1128/JVI.01069-12. pmid:22855490
[34]
Landais E, Saulquin X, Scotet E, Trautmann L, Peyrat MA, Yates JL, et al. Direct killing of Epstein-Barr virus (EBV)-infected B cells by CD4 T cells directed against the EBV lytic protein BHRF1. Blood. 2004;103(4):1408–16. doi: 10.1182/blood-2003-03-0930. pmid:14563644
[35]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013. pmid:21376230
[36]
Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nature reviews Cancer. 2008;8(4):253–67. doi: 10.1038/nrc2347. pmid:18354415
[37]
Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, et al. A computationally designed inhibitor of an epstein-barr viral bcl-2 protein induces apoptosis in infected cells. Cell. 2014;157(7):1644–56. doi: 10.1016/j.cell.2014.04.034. pmid:24949974
[38]
Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2006;2(3):e23. Epub 2006/03/25. doi: 10.1371/journal.ppat.0020023. pmid:16557291
Menezes J, Leibold W, Klein G, Clements G. Establishment and characterization of an Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-genome-negative African Burkitt's lymphoma. Biomedicine / [publiee pour l'AAICIG]. 1975;22(4):276–84.
[41]
Wright WE, Hayflick L. Formation of anucleate and multinucleate cells in normal and SV 40 transformed WI-38 by cytochalasin B. Experimental cell research. 1972;74(1):187–94. pmid:4342183 doi: 10.1016/0014-4827(72)90496-x
[42]
Delecluse HJ, Hilsendegen T, Pich D, Zeidler R, Hammerschmidt W. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A. 1998;95(14):8245–50. pmid:9653172 doi: 10.1073/pnas.95.14.8245
[43]
Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, et al. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo J. 2000;19(12):3080–9. Epub 2000/06/17. doi: 10.1093/emboj/19.12.3080. pmid:10856251
Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30. doi: 10.1007/978-1-60761-652-8_30. pmid:20677001
[46]
Katano H, Pesnicak L, Cohen JI. Simvastatin induces apoptosis of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines and delays development of EBV lymphomas. Proc Natl Acad Sci U S A. 2004;101(14):4960–5. doi: 10.1073/pnas.0305149101. pmid:15041742
[47]
Chou SP, Tsai CH, Li LY, Liu MY, Chen JY. Characterization of monoclonal antibody to the Epstein-Barr virus BHRF1 protein, a homologue of Bcl-2. Hybridoma and hybridomics. 2004;23(1):29–37. doi: 10.1089/153685904322772006. pmid:15000846
[48]
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179. Epub 2005/11/30. doi: 10.1093/nar/gni178. pmid:16314309
[49]
Cosmopoulos K, Pegtel M, Hawkins J, Moffett H, Novina C, Middeldorp J, et al. Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. J Virol. 2009;83(5):2357–67. Epub 2008/12/19. doi: 10.1128/JVI.02104-08. pmid:19091858
[50]
Bell AI, Groves K, Kelly GL, Croom-Carter D, Hui E, Chan AT, et al. Analysis of Epstein-Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. J Gen Virol. 2006;87(Pt 10):2885–90. doi: 10.1099/vir.0.81906-0. pmid:16963746