全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Polymorphism in the Processing Body Component Ge-1 Controls Resistance to a Naturally Occurring Rhabdovirus in Drosophila

DOI: 10.1371/journal.ppat.1005387

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV). By modifying the sequence of the gene in transgenic flies, we identified a 26 amino acid deletion in the serine-rich linker region of Ge-1 that is causing the resistance. Knocking down the expression of the susceptible allele leads to a decrease in viral titre in infected flies, indicating that Ge-1 is an existing restriction factor whose antiviral effects have been increased by the deletion. Ge-1 plays a central role in RNA degradation and the formation of processing bodies (P bodies). A key effector in antiviral immunity, the RNAi induced silencing complex (RISC), localises to P bodies, but we found that Ge-1-based resistance is not dependent on the small interfering RNA (siRNA) pathway. However, we found that Decapping protein 1 (DCP1) protects flies against sigma virus. This protein interacts with Ge-1 and commits mRNA for degradation by removing the 5’ cap, suggesting that resistance may rely on this RNA degradation pathway. The serine-rich linker domain of Ge-1 has experienced strong selection during the evolution of Drosophila, suggesting that this gene may be under long-term selection by viruses. These findings demonstrate that studying naturally occurring polymorphisms that increase resistance to infections enables us to identify novel forms of antiviral defence, and support a pattern of major effect polymorphisms controlling resistance to viruses in Drosophila.

References

[1]  Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, et al. (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335: 428–432. doi: 10.1126/science.1214449. pmid:22282803
[2]  Wang XH, Aliyari R, Li WX, Li HW, Kim K, et al. (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312: 452–454. pmid:16556799 doi: 10.1126/science.1125694
[3]  Aliyari R, Wu Q, Li HW, Wang XH, Li F, et al. (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4: 387–397. doi: 10.1016/j.chom.2008.09.001. pmid:18854242
[4]  van Rij RP, Berezikov E (2009) Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol 17: 163–171. doi: 10.1016/j.tim.2009.01.003. pmid:19299135
[5]  van Rij RP, Saleh MC, Berry B, Foo C, Houk A, et al. (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20: 2985–2995. pmid:17079687 doi: 10.1101/gad.1482006
[6]  Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322: 702. doi: 10.1126/science.1162418. pmid:18974344
[7]  Imler J-L, Eleftherianos I (2009) Drosophila as a model for studying antiviral defences. Insect Infection and Immunity. Oxford: Oxford University Press,Chapter 4.
[8]  Kemp C, Mueller S, Goto A, Barbier V, Paro S, et al. (2013) Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol 190: 650–658. doi: 10.4049/jimmunol.1102486. pmid:23255357
[9]  Moy RH, Gold B, Molleston JM, Schad V, Yanger K, et al. (2014) Antiviral Autophagy Restricts Rift Valley Fever Virus Infection and Is Conserved from Flies to Mammals. Immunity 40: 51–65. doi: 10.1016/j.immuni.2013.10.020. pmid:24374193
[10]  Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A, et al. (2012) Virus Recognition by Toll-7 Activates Antiviral Autophagy in Drosophila. Immunity 36: 658–667. doi: 10.1016/j.immuni.2012.03.003. pmid:22464169
[11]  Shelly S, Lukinova N, Bambina S, Berman A, Cherry S (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30: 588–598. doi: 10.1016/j.immuni.2009.02.009. pmid:19362021
[12]  Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6: e2. doi: 10.1371/journal.pbio.1000002
[13]  Tsai CW, McGraw EA, Ammar ED, Dietzgen RG, Hogenhout SA (2008) Drosophila melanogaster mounts a unique immune response to the Rhabdovirus sigma virus. Appl Environ Microbiol 74: 3251–3256. doi: 10.1128/AEM.02248-07. pmid:18378641
[14]  Xu J, Grant G, Sabin LR, Gordesky-Gold B, Yasunaga A, et al. (2012) Transcriptional Pausing Controls a Rapid Antiviral Innate Immune Response in Drosophila. Cell Host & Microbe 12: 531–543. doi: 10.1016/j.chom.2012.08.011
[15]  Zambon RA, Nandakumar M, Vakharia VN, Wu LP (2005) The Toll pathway is important for an antiviral response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 102: 7257–7262. pmid:15878994 doi: 10.1073/pnas.0409181102
[16]  Zhu F, Ding HJ, Zhu BN (2013) Transcriptional profiling of Drosophila S2 cells in early response to Drosophila C virus. Virology Journal 10:210. doi: 10.1186/1743-422X-10-210. pmid:23803447
[17]  Magwire MM, Bayer F, Webster CL, Cao C, Jiggins FM (2011) Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a Duplication. PLoS Genet. 2011/10/27 ed. pp. e1002337. doi: 10.1371/journal.pgen.1002337. pmid:22028673
[18]  Magwire MM, Fabian DK, Schweyen H, Cao C, Longdon B, et al. (2012) Genome-wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster. PLoS Genet 8: e1003057. doi: 10.1371/journal.pgen.1003057. pmid:23166512
[19]  Wayne ML, Contamine D, Kreitman M (1996) Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol 13: 191–199. pmid:8583891 doi: 10.1093/oxfordjournals.molbev.a025555
[20]  Aminetzach YT, Macpherson JM, Petrov DA (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309: 764–767. pmid:16051794 doi: 10.1126/science.1112699
[21]  Bangham J, Obbard DJ, Kim KW, Haddrill PR, Jiggins FM (2007) The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proc Biol Sci 274: 2027–2034. pmid:17550883 doi: 10.1098/rspb.2007.0611
[22]  Carre-Mlouka A, Gaumer S, Gay P, Petitjean AM, Coulondre C, et al. (2007) Control of sigma virus multiplication by the ref(2)P gene of Drosophila melanogaster: an in vivo study of the PB1 domain of Ref(2)P. Genetics 176: 409–419. pmid:17409092 doi: 10.1534/genetics.106.063826
[23]  Longdon B, Jiggins FM (2012) Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone? Proc Biol Sci 279: 3889–3898. doi: 10.1098/rspb.2012.1208. pmid:22859592
[24]  Dru P, Bras F, Dezelee S, Gay P, Petitjean AM, et al. (1993) Unusual variability of the Drosophila melanogaster ref(2)P protein which controls the multiplication of sigma rhabdovirus. Genetics 133: 943–954. pmid:8462852
[25]  Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, et al. (2008) Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 180: 1065–1071. doi: 10.1083/jcb.200711108. pmid:18347073
[26]  Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, et al. (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183: 5909–5916. doi: 10.4049/jimmunol.0900441. pmid:19812211
[27]  Martins NE, Faria VG, Nolte V, Schlotterer C, Teixeira L, et al. (2014) Host adaptation to viruses relies on few genes with different cross-resistance properties. Proc Natl Acad Sci U S A 111: 5938–5943. doi: 10.1073/pnas.1400378111. pmid:24711428
[28]  Fleuriet A (1988) Maintenance of a hereditary virus-the sigma-virus in populations of its host, Drosophila melanogaster. Evol Biol 237Pu23: 1–30. doi: 10.1007/bf00122183
[29]  Carpenter JA, Obbard DJ, Maside X, Jiggins FM (2007) The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster. Mol Ecol 16: 3947–3954. pmid:17725574 doi: 10.1111/j.1365-294x.2007.03460.x
[30]  Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, et al. (2015) The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biol 13: e1002210. doi: 10.1371/journal.pbio.1002210. pmid:26172158
[31]  Fleuriet A (1981) Comparison of various physiological traits in flies (Drosophila melanogaster) of wild origin, infected or uninfected by the hereditary Rhabdovirus sigma. Arch Virol 69: 261–272. pmid:6794546 doi: 10.1007/bf01317341
[32]  Wilfert L, Jiggins FM (2013) The dynamics of reciprocal selective sweeps of host resistance and a parasite counter-adaptation in Drosophila. Evolution 67: 761–773. doi: 10.1111/j.1558-5646.2012.01832.x. pmid:23461326
[33]  Yampolsky LY, Webb CT, Shabalina SA, Kondrashov AS (1999) Rapid accumulation of a vertically transmitted parasite triggered by relaxation of natural selection among hosts. Evolutionary Ecology Research 1: 581–589.
[34]  Gay P (1978) Drosophila Genes Which Intervene in Multiplication of Sigma Virus. Molecular & General Genetics 159: 269–283. doi: 10.1007/bf00268263
[35]  Bangham J, Knott SA, Kim KW, Young RS, Jiggins FM (2008) Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster. Mol Ecol 17: 3800–3807. doi: 10.1111/j.1365-294X.2008.03873.x. pmid:18665899
[36]  Chen D, Ahlford A, Schnorrer F, Kalchhauser I, Fellner M, et al. (2008) High-resolution, high-throughput SNP mapping in Drosophila melanogaster. Nat Methods 5: 323–329. doi: 10.1038/nmeth.1191. pmid:18327265
[37]  Fan SJ, Marchand V, Ephrussi A (2011) Drosophila Ge-1 promotes P body formation and oskar mRNA localization. PLoS One 6: e20612. doi: 10.1371/journal.pone.0020612. pmid:21655181
[38]  Jinek M, Eulalio A, Lingel A, Helms S, Conti E, et al. (2008) The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. Rna 14: 1991–1998. doi: 10.1261/rna.1222908. pmid:18755833
[39]  Xu J, Yang JY, Niu QW, Chua NH (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18: 3386–3398. pmid:17158604 doi: 10.1105/tpc.106.047605
[40]  Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB (2005) Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11: 1795–1802. pmid:16314453 doi: 10.1261/rna.2142405
[41]  Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, et al. (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178. doi: 10.1038/nature10811. pmid:22318601
[42]  Pool JE, Corbett-Detig RB, Sugino RP, Stevens KA, Cardeno CM, et al. (2012) Population Genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genet 8: e1003080. doi: 10.1371/journal.pgen.1003080. pmid:23284287
[43]  Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33: e36. pmid:15731329 doi: 10.1093/nar/gni035
[44]  Venken KJ, He Y, Hoskins RA, Bellen HJ (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314: 1747–1751. pmid:17138868 doi: 10.1126/science.1134426
[45]  Xu K, Bogert BA, Li W, Su K, Lee A, et al. (2004) The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Curr Biol 14: 1025–1034. pmid:15202995 doi: 10.1016/j.cub.2004.05.055
[46]  Hain D, Bettencourt BR, Okamura K, Csorba T, Meyer W, et al. (2010) Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects. PLoS One 5: e15264. doi: 10.1371/journal.pone.0015264. pmid:21253006
[47]  Brun GP, N . (1980) The viruses of Drosophila. In: Wright MATRF, editor. The genetics and biology of Drosophila. New York: NY: Academic Press. pp. 625–702.
[48]  McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654. pmid:1904993 doi: 10.1038/351652a0
[49]  Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73: 861–890. pmid:15189161 doi: 10.1146/annurev.biochem.73.011303.074032
[50]  Reineke LC, Lloyd RE (2013) Diversion of stress granules and P-bodies during viral infection. Virology 436: 255–267. doi: 10.1016/j.virol.2012.11.017. pmid:23290869
[51]  Mok BW, Song W, Wang P, Tai H, Chen Y, et al. (2012) The NS1 protein of influenza A virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAP55) during virus infection. J Virol 86: 12695–12707. doi: 10.1128/JVI.00647-12. pmid:22973032
[52]  Khong A, Jan E (2011) Modulation of stress granules and P bodies during dicistrovirus infection. J Virol 85: 1439–1451. doi: 10.1128/JVI.02220-10. pmid:21106737
[53]  Hopkins KC, McLane LM, Maqbool T, Panda D, Gordesky-Gold B, et al. (2013) A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev 27: 1511–1525. doi: 10.1101/gad.215384.113. pmid:23824541
[54]  Chahar HS, Chen S, Manjunath N (2013) P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology 436: 1–7. doi: 10.1016/j.virol.2012.09.041. pmid:23102969
[55]  Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130: 413–426. pmid:17693253 doi: 10.1016/j.cell.2007.07.039
[56]  Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7: 633–636. pmid:15908945 doi: 10.1038/ncb1265
[57]  Bernhardt SA, Simmons MP, Olson KE, Beaty BJ, Blair CD, et al. (2012) Rapid intraspecific evolution of miRNA and siRNA genes in the mosquito Aedes aegypti. PLoS One 7: e44198. doi: 10.1371/journal.pone.0044198. pmid:23028502
[58]  Obbard DJ, Jiggins FM, Halligan DL, Little TJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16: 580–585. pmid:16546082 doi: 10.1016/j.cub.2006.01.065
[59]  Jiggins FM, Tinsley MC (2005) An ancient mitochondrial polymorphism in Adalis bipunctata linked to a sex-ratio-distorting bacterium. Genetics 171: 1115–1124. pmid:16079227 doi: 10.1534/genetics.105.046342
[60]  Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156. pmid:17625558 doi: 10.1038/nature05954
[61]  Venken KJ, Carlson JW, Schulze KL, Pan H, He Y, et al. (2009) Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 6: 431–434. doi: 10.1038/nmeth.1331. pmid:19465919
[62]  Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312–3317. pmid:17360644 doi: 10.1073/pnas.0611511104
[63]  Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, et al. (2014) Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog 10: e1004369. doi: 10.1371/journal.ppat.1004369. pmid:25233341
[64]  Hadfield JD (2009) MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software 33: 1–22. doi: 10.18637/jss.v033.i02
[65]  Venables WN, Ripley BD, Venables WN (2002) Modern applied statistics with S. New York: Springer. xi, 495 p. p.
[66]  Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, et al. (2007) Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 5: e310. pmid:17988176 doi: 10.1371/journal.pbio.0050310
[67]  Egea R, Casillas S, Barbadilla A (2008) Standard and generalized McDonald-Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res 36: W157–162. doi: 10.1093/nar/gkn337. pmid:18515345
[68]  Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415: 1022–1024. pmid:11875568 doi: 10.1038/4151022a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133