全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tuberculosis in Newborns: The Lessons of the “Lübeck Disaster” (1929–1933)

DOI: 10.1371/journal.ppat.1005271

Full-Text   Cite this paper   Add to My Lib

Abstract:

In an accident later known as the Lübeck disaster, 251 neonates were orally given three doses of the new Bacille Calmette–Guérin (BCG) antituberculosis (TB) vaccine contaminated with Mycobacterium tuberculosis. A total of 173 infants developed clinical or radiological signs of TB but survived the infection, while 72 died from TB. While some blamed the accident on BCG itself by postulating reversion to full virulence, such a possibility was conclusively disproven. Rather, by combining clinical, microbiological, and epidemiological data, the chief public health investigator Dr. A. Moegling concluded that the BCG vaccine had been contaminated with variable amounts of fully virulent M. tuberculosis. Here, we summarize the conclusions drawn by Moegling and point out three lessons that can be learned. First, while mortality was high (approximately 29%), the majority of neonates inoculated with M. tuberculosis eventually overcame TB disease. This shows the high constitutional resistance of humans to the bacillus. Second, four semiquantitative levels of contamination were deduced by Moegling from the available data. While at low levels of M. tuberculosis there was a large spread of clinical phenotypes reflecting a good degree of innate resistance to TB, at the highest dose, the majority of neonates were highly susceptible to TB. This shows the dominating role of dose for innate resistance to TB. Third, two infants inoculated with the lowest dose nevertheless died of TB, and their median time from inoculation to death was substantially shorter than for those who died after inoculation with higher doses. This suggests that infants who developed disease after low dose inoculation are those who are most susceptible to the disease. We discuss some implications of these lessons for current study of genetic susceptibility to TB.

References

[1]  World Health Organization. Global tuberculosis report 2014. Geneva: WHO, 2014.
[2]  Marks GB, Bai J, Simpson SE, Sullivan EA, Stewart GJ. Incidence of tuberculosis among a cohort of tuberculin-positive refugees in Australia: reappraising the estimates of risk. Am J Respir Crit Care Med. 2000;162(5):1851–1854. doi: 10.1164/ajrccm.162.5.2004154 pmid:11069825.
[3]  Fox GJ, Menzies D. Epidemiology of tuberculosis immunology. Adv Exp Med Biol. 2013;783:1–32. doi: 10.1007/978-1-4614-6111-1_1 pmid:23468101.
[4]  Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130428. doi: 10.1098/rstb.2013.0428 pmid:24821915; PubMed Central PMCID: PMC4024222.
[5]  O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, et al. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527. doi: 10.1146/annurev-immunol-032712-095939 pmid:23516984.
[6]  Jones C, Whittaker E, Bamford A, Kampmann B. Immunology and pathogenesis of childhood TB. Paediatr Respir Rev. 2011;12(1):3–8. doi: 10.1016/j.prrv.2010.09.006 pmid:21172668.
[7]  Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, et al. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis. 2004;8(4):392–402. pmid:15141729.
[8]  Muller B, Durr S, Alonso S, Hattendorf J, Laisse CJ, et al. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis. 2013;19(6):899–908. doi: 10.3201/eid1906.120543 pmid:23735540.
[9]  Durr S, Muller B, Alonso S, Hattendorf J, Laisse CJ, et al. Differences in primary sites of infection between zoonotic and human tuberculosis: results from a worldwide systematic review. PLoS Negl Trop Dis. 2013;7(8):e2399. doi: 10.1371/journal.pntd.0002399 pmid:24009789; PubMed Central PMCID: PMC3757065.
[10]  Moegling A. Die "Epidemiologie" der Lübecker S?uglingstuberkulose. Arbeiten a d Reichsges-Amt. 1935;69:1–24. doi: 10.1007/978-3-642-92013-4_1
[11]  Schuermann P, Kleinschmidt H. Pathologie und Klinik der Lübecker S?uglingstuberkuloseerkrankungen. Arbeiten a d Reichsges-Amt. 1935;69:25–204. doi: 10.1007/978-3-642-92013-4_2
[12]  Lange L, Pescatore H. Bakteriologische Untersuchungen zur Lübecker S?uglingstuberkulose. Arbeiten a d Reichsges-Amt. 1935;69:205–305. doi: 10.1007/978-3-642-92013-4_3
[13]  Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, et al. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis. 2003;37(2):302–306. pmid:12856223. doi: 10.1086/375587
[14]  Malik S, Abel L, Tooker H, Poon A, Simkin L, et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci U S A. 2005;102(34):12183–12188. pmid:16103355. doi: 10.1073/pnas.0503368102
[15]  Zhang FR, Huang W, Chen SM, Sun LD, Liu H, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361(27):2609–2618. doi: 10.1056/NEJMoa0903753 pmid:20018961.
[16]  Zhang F, Liu H, Chen S, Low H, Sun L, et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet. 2011;43(12):1247–1251. Epub 2011/10/25. doi: 10.1038/ng.973 pmid:22019778.
[17]  Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet. 2010;42(9):739–741. doi: 10.1038/ng.639 pmid:20694014.
[18]  Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, et al. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet. 2012;44(3):257–259. doi: 10.1038/ng.1080 pmid:22306650; PubMed Central PMCID: PMC3427019.
[19]  Curtis J, Luo Y, Zenner HL, Cuchet-Lourenco D, Wu C, et al. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat Genet. 2015;47(5):523–527. doi: 10.1038/ng.3248 pmid:25774636; PubMed Central PMCID: PMC4414475.
[20]  Alcais A, Alter A, Antoni G, Orlova M, Nguyen VT, et al. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet. 2007;39(4):517–522. doi: 10.1038/ng2000 pmid:17353895.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133