|
计算机科学 2015
基于平均互信息的混合条件属性聚类算法DOI: 10.11896/j.issn.1002-137X.2015.03.054 Abstract: 混合条件属性参数间的距离值存在较大的差异,导致仅聚合距离数量级较大、较规律的数值条件属性对象,而忽视数量级较小、混沌,但类别特征更加明显的分类条件属性对象。提出了一种基于平均互信息的聚类算法。通过熵量化参数类别特性的大小,再根据熵的平均互信息计算方法衡量数据对象间类别的相同、相异特征量,统一数值和分类条件属性参数间距离的数量级,最后通过优化迭代自适应过程得到最终聚类结果。实验结果表明,该算法具有良好的聚类质量和自适应性。
|