全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊核聚类的图像svm分类辨识

DOI: 10.11896/j.issn.1002-137X.2015.03.063

Keywords: 支持向量机,隶属度函数,模糊核聚类,数据场

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种结合特征场和模糊核聚类支持向量机的图像分类辨识方法。首先,构造符合人类视觉特性的图像彩色和纹理特征数据场,一方面,引入新阈值,建立图像纹理特征;另一方面,在图像彩色特征上,对能够引起注意的像素区域的像素点进行加权处理,并使用彩色空间分布离散度来描述彩色的空间分布。其次,采用模糊核聚类支持向量机对图像进行分类研究。在使用特征空间时,不仅考虑了样本与类中心间的关系,还考虑了类中各个样本间的关系,以模糊连接度来度量类中各个样本间的关系,并以二叉树方式构造子分类器。实验结果表明,该方法可以获得较好的图像分类效果。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133