|
计算机科学 2015
基于改进lsh的协同过滤推荐算法Keywords: 推荐系统,近似近邻,协同过滤,相似性度量,局部敏感哈希 Abstract: 协同过滤是个性化推荐系统中应用较为成功与广泛的技术之一,影响协同过滤推荐质量的关键在于获取目标用户的k近邻用户,然后基于k近邻对其未评价的项目进行评分预测与推荐。针对用户评分数据的规模大、维度高、高度稀疏以及直接进行相似性度量的实时性差等对推荐性能的影响,提出一种基于lsh的协同过滤推荐算法,并对其进行改进。该算法基于p稳态分布的局部敏感哈希对用户评分数据进行降维与索引,并采用多探寻的机制对其进行改进,缓解多个哈希表对内存的压力,快速获取目标用户的近邻用户集合,然后采用加权方法来预测用户评分并产生推荐。标准数据集上的实验结果表明,该方法能有效克服评分数据的高维稀疏,并在保证一定推荐精度的前提下,大幅度提高推荐效率和降低内存消耗。
|