全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于集成学习与遗传算法的网络书写纹识别研究

Keywords: 网络书写纹,集成学习,遗传算法,特征子集

Full-Text   Cite this paper   Add to My Lib

Abstract:

n-gram字符是网络书写纹识别最有效的特征类型之一。针对其特征维数高、冗余特征多且无关特征少等特点,提出一种基于特征空间划分来构造集成学习分类器的网络书写纹识别方法。该方法首先根据一定的划分粒度,将初始特征集划分为等维度、无交又的特征子集,然后基于每一个特征子集训练生成对应的基分类器(多元朴素贝叶斯),最后采用算术与几何平均相结合的融合策略完成集成学习分类器的构造。特征空间的划分(即特征子集的选择)采用遗传算法进行优化。实验在一个真实数据集上开展,其结果表明该方法有效地提高了网络书写纹的识别性能。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133