全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于项目聚类的全局最近邻的协同过滤算法

Keywords: 推荐系统,协同过滤,聚类,全局相似性,重叠度因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

用户评分数据极端稀疏的情况下,传统相似性度量方法存在弊端,导致推荐系统的推荐质量急剧下降。针对此问题,提出了一种基于项目聚类的全局最近部的协同过滤算法。该算法根据项目之间的相似性进行聚类,使得相似性较高的项目聚成一类,在项目聚类集的基础上,计算用户的局部相似度,使用一种新的最近部用户全局相似度作为衡量用户间相似性的标准;其次,给出了一种利用重叠度因子来调节局部相似度的方法,以更准确地刻画用户之间的相似性。实验结果表明,该算法可以提升预测结果的准确性,提高推荐质量,特别是在数据较为稀疏时,改善尤为明显。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133