全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于剪枝的海量数据离群点挖掘

Keywords: 离群点,数据挖掘,基于距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于距离的离群点挖掘通常需要的时间进行大量的距离计算与比较,这限制了其在海量数据上的应用。针对此问题,提出了一个带剪枝功能的离群点挖掘算法。算法分为两步:在对数据集进行一通扫描后,剪枝掉大量的非离群点;然后对余下的可疑数据实施一种改进的嵌套循环算法,以每个数据点与其k个最近部点的平均距离作为离群度,确定前n个离群点。在真实数据和合成数据集上的实验结果均表明,该算法在获得高命中率的同时仍保持低误警率。与相关算法相比,其具有较低的时间复杂性。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133