|
计算机科学 2015
时空域深度卷积神经网络及其在行为识别上的应用DOI: 10.11896/j.issn.1002-137X.2015.07.052 Keywords: 时空域,卷积神经网络,深度学习,动作特征,行为识别 Abstract: 近年来深度卷积神经网络在静态图像识别上取得了较大进展,但在行为视频上建模运动信息的能力较弱。但是,运动信息是行为识别区别于静态图像识别的关键。基于滤波器响应积提出了时空域深度卷积神经网络。该网络先将相邻帧对应的卷积核分为两组,近似地形成傅里叶基函数对,后续的乘法层将不同帧产生的响应两两相乘后再输入加法层求和,从而将相邻帧映射到变换矩阵的特征值对应的不变子空间上,依靠相邻帧在不变子空间上的旋转角度检测它们之间的运动特征。理论分析证明,网络既对运动敏感,又对内容敏感。实验表明,该网络能对行为视频做出更准确的分类,并与近年出现的其他6种算法进行比较,结果体现了本算法的优越性。
|