全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于多层反卷积网络的SAR图像分类
Classification of SAR Images Based on Deep Deconvolutional Network

DOI: 10.13203/j.whugis20140366

Keywords: 合成孔径雷达,多层学习,反卷积网络,图像分类,软概率池化,
synthetic aperture radar
,multilayer learning,deconvolutional network,image classification,soft probability pooling

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统特征提取方法不能提取目标高层结构特征的问题,提出了一种基于软概率的池化方法,结合多层反卷积网络,学习目标的高层结构特征,并将其用于合成孔径雷达(SAR)图像分类。首先对SAR图像进行子块划分,然后对每个子块进行基于多层反卷积网络的特征编码,学习出不同层次上的图像特征,最后将该特征用于支持向量机(SVM)分类器,实现SAR图像的分类。在国内首批SAR数据上的实验表明,该算法获得了较高的分类准确率

References

[1]  Wan Peng, Wang Jianguo, Huang Shunji. A Synthesis Method for SAR Image Target Detection[J]. <em>Acta Electronica Sinica</em>, 2001, 29(3):323-325(万朋, 王建国, 黄顺吉. SAR图像目标综合检测方法[J].电子学报, 2001, 29(3): 323-325)
[2]  He Chu, Liu Ming, Xu Lianyu,et al. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J].<em>Geomatics and Information Science of Wuhan University</em>, 2012, 37(1): 46-49 (何楚, 刘明, 许连玉,等. 利用特征选择自适应决策树的层次SAR图像分类[J]. 武汉大学学报·信息科学版, 2012,37(1):46-49)
[3]  Hinton G E, Salakhutdinov R. Reducing the Dimensionality of Data with Neural Networks[J]. <em>Science</em>, 2006, 313(5 786):504-507
[4]  Huan Ruohong, Zhang Ping, Pan Yun. SAR Target Recognition Using PCA, ICA and Gabor Wavelet Decision Fusion[J]. <em>Journal of Remote Sensing</em>, 2012, 16(2): 262-274(宦若虹, 张平, 潘赟. ICA、PCA和Gabor小波决策融合的SAR目标识别[J]. 遥感学报, 2012, 16(2): 262-274)
[5]  Maitre H. Synthetic Aperture Radar Image Processing[M]. Sun Hong. Beijing: Publishing House of Electronics Industry, 2005 (Maitre H. 合成孔径雷达图像处理[M]. 孙洪.北京: 电子工业出版社, 2005)
[6]  Vincent P, Larochelle H, Lajoie I, et al.Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion[J].<em>Journal of Machine Learning Research</em>, 2010,11:3 371-3 408
[7]  Wu Xiaohong, Xie Ming, Gan Ke,et al. Feature Extraction and Target Recognition of SAR Images[J]. <em>Journal of Sichuan University(Natural Science Edition)</em>, 2007, 44(6): 1 275-1 280(吴晓红,谢明, 干可,等. SAR图像的特征提取与目标识别[J].四川大学学报(自然科学版), 2007, 44(6):1 275-1 280)
[8]  He Chu, Liu Ming,Feng Qian, et al. PolInSAR Image Classification Based on Compressed Sensing and Multi-scale Pyramid[J]. <em>Acta Automatic Sinica</em>, 2011, 37(7): 820-827(何楚, 刘明, 冯倩,等. 基于多尺度压缩感知金字塔的极化干涉SAR图像分类[J]. 自动化学报, 2011, 37(7): 820-827)
[9]  Zhang Xiaolei, Wu Ji. Deep Belief Networks Based Voice Activity Detection[J]. <em>IEEE Transactions on Audio, Speech and Language Processing</em>,2013,21(4):697-710
[10]  Yang J C, Yu K, Gong Y H,et al. Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009
[11]  Zeiler M D, Taylor G W, Fergus R. Adaptive Deconvolutional Networks for Mid and High Level Feature Learning[C].IEEE International Conference on Computer Vision (ICCV), Barcelona,Spain,2011
[12]  Yin Hui. Research on Urban Scene Classification Method Using High Resolution Synthetic Aperture Radar Image Based on Local Feature Representation(殷慧. 基于局部特征表达的高分辨率SAR图像城区场景分类方法研究[D]. 武汉: 武汉大学,2010)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133