Bacterial superinfections following influenza A virus (IAV) are predominant causes of morbidity in humans. The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) and highly virulent IAV strains has reduced treatment options. Development of an appropriate animal model to study secondary S. aureus infections may provide important information regarding disease pathogenesis. Pigs are natural hosts to both IAV and S. aureus and have respiratory physiology and immune response comparable to humans. To establish a time course of susceptibility to S. aureus after IAV infection, nursery pigs infected intranasally with IAV were challenged with MRSA at different time points. Lung pathology scores and MRSA CFU were evaluated in dual-infected animals after IAV infection. Flow cytometric analysis of bronchoalveolar lavage fluid indicated differences between treatments. These results demonstrate the appropriateness of an intranasal challenge model in nursery pigs for studying the pathogenesis of IAV and S. aureus coinfection and provide insights into the timeframe for susceptibility of IAV-infected pigs to secondary S. aureus infection. 1. Introduction Influenza A virus (IAV) infections in humans are generally mild and not often fatal; however, morbidity and mortality significantly increase with bacterial superinfections [1, 2]. Staphylococcus aureus commonly causes pneumonia in influenza patients, and methicillin-resistant strains currently account for 20–40% of all community-acquired pneumonia (CAP) [3]. The increasing prevalence of antibiotic-resistant bacteria, emergence of highly virulent IAV strains, and recent pandemics necessitate development of an appropriate animal model of polymicrobial infections to understand the pathogenesis and to identify intervention strategies. The majority of animal studies use adapted strains of IAV, which induce fatal respiratory disease atypical of human infection [4, 5]. Development of appropriate animal models to study the mechanisms of pathogenesis may provide important information for disease prevention, diagnosis, and treatment. Mice have traditionally been used to study IAV and bacterial coinfection. Although mice coinfected with Streptococcus pneumoniae and IAV suffer from more severe bronchopneumonia than mice with a single infection [6], disease synergy is not evident in the mouse model of S. aureus and influenza [7]. Furthermore, the IAV strains used in mouse coinfection studies are adapted to replicate effectively within the mouse, limiting the likeness of this model to human infection.
References
[1]
K. F. van der Sluijs, L. J. R. van Elden, M. Nijhuis et al., “IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection,” Journal of Immunology, vol. 172, no. 12, pp. 7603–7609, 2004.
[2]
W. W. Thompson, D. K. Shay, E. Weintraub et al., “Influenza-associated hospitalizations in the United States,” Journal of the American Medical Association, vol. 292, no. 11, pp. 1333–1340, 2004.
[3]
Y. Katayama, T. Ito, and K. Hiramatsu, “A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 6, pp. 1549–1555, 2000.
[4]
Y. Matsuoka, E. W. Lamirande, and K. Subbarao, “The mouse model for influenza,” Current Protocols in Microbiology, chapter 15: unit 15G 3, 2009.
[5]
J. P. Mizgerd and S. J. Skerrett, “Animal models of human pneumonia,” American Journal of Physiology, Lung Cellular and Molecular Physiology, vol. 294, no. 3, pp. L387–L398, 2008.
[6]
M. Seki, K. Yanagihara, Y. Higashiyama et al., “Immunokinetics in severe pneumonia due to influenza virus and bacteria coinfection in mice,” European Respiratory Journal, vol. 24, no. 1, pp. 143–149, 2004.
[7]
T. F. DeMaria and F. A. Kapral, “Pulmonary infection of mice with Staphylococcus aureus,” Infection and Immunity, vol. 21, no. 1, pp. 114–123, 1978.
[8]
M. G. Ottolini, J. C. G. Blanco, M. C. Eichelberger et al., “The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis,” Journal of General Virology, vol. 86, no. 10, pp. 2823–2830, 2005.
[9]
L. E. Braun, D. E. Sutter, M. C. Eichelberger et al., “Co-infection of the cotton rat (Sigmodon hispidus) with Staphylococcus aureus and influenza A virus results in synergistic disease,” Microbial Pathogenesis, vol. 43, no. 5-6, pp. 208–216, 2007.
[10]
D. L. Barnard, “Animal models for the study of influenza pathogenesis and therapy,” Antiviral Research, vol. 82, no. 2, pp. A110–A122, 2009.
[11]
K. van Reeth, S. van Gucht, and M. Pensaert, “Correlations between lung proinflammatory cytokine levels, virus replication, and disease after swine influenza virus challenge of vaccination-immune pigs,” Viral Immunology, vol. 15, no. 4, pp. 583–594, 2002.
[12]
H. Khiabanian, V. Trifonov, and R. Rabadan, “Reassortment patterns in swine influenza viruses,” PLoS ONE, vol. 4, no. 10, Article ID e7366, 2009.
[13]
I. H. Brown, “The epidemiology and evolution of influenza viruses in pigs,” Veterinary Microbiology, vol. 74, no. 1-2, pp. 29–46, 2000.
[14]
D. van Riel, V. J. Munster, E. De Wit et al., “Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals,” American Journal of Pathology, vol. 171, no. 4, pp. 1215–1223, 2007.
[15]
A. J. de Neeling, M. J. M. van den Broek, E. C. Spalburg et al., “High prevalence of methicillin resistant Staphylococcus aureus in pigs,” Veterinary Microbiology, vol. 122, no. 3-4, pp. 366–372, 2007.
[16]
T. Khanna, R. Friendship, C. Dewey, and J. S. Weese, “Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers,” Veterinary Microbiology, vol. 128, no. 3-4, pp. 298–303, 2008.
[17]
F. Carrat, E. Vergu, N. M. Ferguson et al., “Time lines of infection and disease in human influenza: a review of volunteer challenge studies,” American Journal of Epidemiology, vol. 167, no. 7, pp. 775–785, 2008.
[18]
L. L. H. Lau, B. J. Cowling, V. J. Fang et al., “Viral shedding and clinical illness in naturally acquired influenza virus infections,” Journal of Infectious Diseases, vol. 201, no. 10, pp. 1509–1516, 2010.
[19]
J. L. Speshock, N. Doyon-Reale, R. Rabah, M. N. Neely, and P. C. Roberts, “Filamentous influenza A virus infection predisposes mice to fatal septicemia following superinfection with Streptococcus pneumoniae serotype 3,” Infection and Immunity, vol. 75, no. 6, pp. 3102–3111, 2007.
[20]
J. A. McCullers and J. E. Rehg, “Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor,” Journal of Infectious Diseases, vol. 186, no. 3, pp. 341–350, 2002.
[21]
L. K. Bustad and R. O. Mcclellan, “Swine in biomedical research,” Science, vol. 152, no. 3728, pp. 1526–1530, 1966.
[22]
C. Passariello, L. Nencioni, R. Sgarbanti et al., “Viral hemagglutinin is involved in promoting the internalisation of Staphylococcus aureus into human pneumocytes during influenza A H1N1 virus infection,” International Journal of Medical Microbiology, vol. 301, pp. 97–104, 2010.
[23]
C. L. Small, C. R. Shaler, S. McCormick et al., “Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung,” Journal of Immunology, vol. 184, no. 4, pp. 2048–2056, 2010.
[24]
D. T.T. Hang, E. J. Choi, J. Y. Song, S. E. Kim, J. Kwak, and Y. K. Shin, “Differential effect of prior influenza infection on alveolar macrophage phagocytosis of Staphylococcus aureus and Escherichia coli: involvement of interferon-gamma production,” Microbiology and Immunology, vol. 55, no. 11, pp. 751–759, 2011.
[25]
T. M. Tumpey, A. García-Sastre, J. K. Taubenberger et al., “Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice,” Journal of Virology, vol. 79, no. 23, pp. 14933–14944, 2005.
[26]
A. Kudva, E. V. Scheller, K. M. Robinson et al., “Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice,” Journal of Immunology, vol. 186, no. 3, pp. 1666–1674, 2011.
[27]
K. K. McKinstry, T. M. Strutt, A. Buck et al., “IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge,” Journal of Immunology, vol. 182, no. 12, pp. 7353–7363, 2009.
[28]
L. A. Pittet, L. Hall-Stoodley, M. R. Rutkowski, and A. G. Harmsen, “Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 4, pp. 450–460, 2010.
[29]
L. A. McNamee and A. G. Harmsen, “Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection,” Infection and Immunity, vol. 74, no. 12, pp. 6707–6721, 2006.
[30]
Prevention CfDCa, “CDC recommendations for the amount of time persons with Influenza-Like illness should be away from others”.