全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

距离修正的模糊c均值聚类算法

Keywords: 聚类,模糊c均值,距离度量,点密度,调节因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

?经典的模糊c均值算法基于欧氏距离,存在等划分趋势的缺陷,分错率较高,只适用于球形结构的聚类。针对这一问题,利用数据的点密度信息,在数据点与聚类中心的距离度量中引入了调节因子,提出了一种基于密度的距离修正矩阵,并用其代替经典模糊c均值算法中的距离度量矩阵。通过人造数据集和uci数据集的两组聚类实验,证实了改进算法对非球形结构的数据同样适用,且相比经典的模糊c均值算法具有更高的聚类准确率。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133