Enalapril maleate, the oldest and most widely distributed ACEI, and alacepril, the newest and antioxidant ACEI, were compared in the point of cardioprotective effect for Dahl salt-sensitive rat. In order to evaluate the correlation between the three factors, cardiac fibrosis and blood pressure/oxidative-stress marker (tissue TBARS), index of correlation was calculated. The results showed a significant difference in cardiac fibrosis between high-dose alacepril (30?mg/kg/day, group H) and enalapril maleate (10?mg/kg/day, group E). There was significant correlation between cardiac fibrosis and oxidative-stress marker, although there was no correlation between cardiac fibrosis and blood pressure. Fibrosis was more influenced by oxidative stress not by blood pressure, we should not select ACEI only by blood pressure-lowering effect and should more consider cardioprotective effects of ACEI. 1. Introduction Heart failure is defined as a syndrome that demonstrates a systolic dysfunction, diastolic dysfunction, or both. There are many mechanisms by which heart failure can be induced. However, cardiac remodeling and sequential fibrosis of cardiac muscle seems to contribute equally to cardiac failure. Although many factors are referred to as causative agents in cardiac remodeling, the renin-angiotensin system (RAS), sympathetic nerve system, and reactive oxygen species (ROS) are considered the major factors that intricately interact with each another. Because angiotensin II (Ang II) is generated by the RAS and induces the activation of sympathetic nerve system and augmentation of ROS, regulation of the RAS is recognized as an important measure for preventing fibrosis of cardiac muscle. Two types of RAS, circulating RAS and cardiac RAS, which act in different ways have been reported [1–6]. Circulating RAS is activated in response to decreased cardiac output where it increases blood pressure by constricting the peripheral vessels mainly via sodium retention. Cardiac RAS directly stimulates cardiomyocyte hypertrophy and fibroblast proliferation, which leads to left ventricular hypertrophy, diastolic and systolic dysfunction, arrhythmia, heart failure, and, ultimately, cardiac cell death. To maintain the cardiac function, inhibition of cardiac RAS seems important, and many types of angiotensin-converting enzyme inhibitors (ACEIs) are used for this purpose [7]. Various types of ACEIs with very similar basic vasodepressive effects are available; however, they differ slightly in their pharmacokinetics. To stabilize the therapeutic effect and minimize the adverse effects,
References
[1]
S. Sanker, U. M. Chandrasekharan, D. Wilk, M. J. Glynias, S. S. Karnik, and A. Husain, “Distinct multisite synergistic interactions determine substrate specificities of human chymase and rat chymase-1 for angiotensin II formation and degradation,” Journal of Biological Chemistry, vol. 272, no. 5, pp. 2963–2968, 1997.
[2]
E. Balcells, Q. C. Meng, W. H. Johnson Jr., S. Oparil, and L. J. Dell'italia, “Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations,” American Journal of Physiology, vol. 273, no. 4, pp. H1769–H1774, 1997.
[3]
B. Dahlof, “Effect of angiotensin II blockade on cardiac hypertrophy and remodelling: a review,” Journal of Human Hypertension, vol. 9, supplement 5, pp. S37–S44, 1995.
[4]
L. Barlucchi, A. Leri, D. E. Dostal et al., “Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure,” Circulation Research, vol. 88, no. 3, pp. 298–304, 2001.
[5]
R. E. Schmieder, “Mechanisms for the clinical benefits of angiotensin II receptor blockers,” American Journal of Hypertension, vol. 18, no. 5, pp. 720–730, 2005.
[6]
J. Varagic and E. D. Frohlich, “Local cardiac renin—angiotensin system: hypertension and cardiac failure,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 11, pp. 1435–1442, 2002.
[7]
E. Plante, M. Gaudreau, D. Lachance et al., “Angiotensin-converting enzyme inhibitor captopril prevents volume overload cardiomyopathy in experimental chronic aortic valve regurgitation,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 3, pp. 191–199, 2004.
[8]
S. Takai, D. Jin, M. Sakaguchi, and M. Miyazaki, “Significant target organs for hypertension and cardiac hypertrophy by angiotensin-converting enzyme inhibitors,” Hypertension Research, vol. 27, no. 3, pp. 213–219, 2004.
[9]
T. Kinugawa, S. Osaki, M. Kato et al., “Effects of the angiotensin-converting enzyme inhibitor alacepril on exercise capacity and neurohormonal factors in patients with mild-to-moderate heart failure,” Clinical and Experimental Pharmacology and Physiology, vol. 29, no. 12, pp. 1060–1065, 2002.
[10]
M. B. Kadiiska, B. C. Gladen, D. D. Baird et al., “Biomarkers of oxidative stress study II. Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning?” Free Radical Biology and Medicine, vol. 38, no. 6, pp. 698–710, 2005.
[11]
E. Y. S?zmen, B. S?zmen, F. K. Girgin et al., “Antioxidant enzymes and paraoxonase show a co-activity in preserving low-density lipoprotein from oxidation,” Clinical and Experimental Medicine, vol. 1, no. 4, pp. 195–199, 2001.
[12]
A. K. Dhalla, M. F. Hill, and P. K. Singal, “Role of oxidative stress in transition of hypertrophy to heart failure,” Journal of the American College of Cardiology, vol. 28, no. 2, pp. 506–514, 1996.
[13]
N. Hirawa, Y. Uehara, A. Numabe et al., “The implication of renin-angiotensin system on renal injury seen in Dahl salt-sensitive rats,” American Journal of Hypertension, vol. 10, no. 5, part 2, pp. 102S–106S, 1997.
[14]
R. Doi, T. Masuyama, K. Yamamoto et al., “Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats,” Journal of Hypertension, vol. 18, no. 1, pp. 111–120, 2000.
[15]
M. K. Shigenaga and B. N. Ames, “Assays for 8-hydroxy- -deoxyguanosine: a biomarker of in vivo oxidative DNA damage,” Free Radical Biology and Medicine, vol. 10, no. 3-4, pp. 211–216, 1991.
[16]
Y. Chen, M. Hou, Y. Li et al., “Increased superoxide production causes coronary endothelial dysfunction and depressed oxygen consumption in the failing heart,” American Journal of Physiology, vol. 288, no. 1, pp. H133–H141, 2005.
[17]
K. Moore and L. J. Roberts II, “Measurement of lipid peroxidation,” Free Radical Research, vol. 28, no. 6, pp. 659–671, 1998.
[18]
T. Noguchi, Y. Kihara, K. J. Begin et al., “Altered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart: amelioration by endothelin blockade,” Circulation, vol. 107, no. 4, pp. 630–635, 2003.
[19]
E. Dernbach, C. Urbich, R. P. Brandes, W. K. Hofmann, A. M. Zeiher, and S. Dimmeler, “Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress,” Blood, vol. 104, no. 12, pp. 3591–3597, 2004.
[20]
Y. Hirono, T. Yoshimoto, N. Suzuki et al., “Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system,” Endocrinology, vol. 148, no. 4, pp. 1688–1696, 2007.
[21]
M. A. Bayorh, G. Mann, M. Walton, and D. Eatman, “Effects of enalapril, tempol, and eplerenone on salt-induced hypertension in Dahl salt-sensitive rats,” Clinical and Experimental Hypertension, vol. 28, no. 2, pp. 121–132, 2006.
[22]
Y. Yu, N. Fukuda, E. H. Yao et al., “Effects of an ARB on endothelial progenitor cell function and cardiovascular oxidation in hypertension,” American Journal of Hypertension, vol. 21, no. 1, pp. 72–77, 2008.
[23]
U. R. Kodavanti, D. L. Costa, and P. A. Bromberg, “Rodent models of cardiopulmonary disease: their potential applicability in studies of air pollutant susceptibility,” Environmental Health Perspectives, vol. 106, no. 1, pp. 111–130, 1998.