|
计算机应用 2015
基于多维滑窗的异常数据检测方法Keywords: 异常数据检测,数据起源,分级标注模型,多维影响因子,卡尔曼算法 Abstract: ?随着数据流的广泛运用,数据流中异常数据的检测问题也引起了更多的关注.现有的卡尔曼滤波算法需要的历史数据量虽然小,但只适用于单个异常点的检测,对于复杂连续的异常值检测效果较差.针对这个问题,提出一种水文传感器分级标注模型,并在此基础上提出一种基于多维影响因子的卡尔曼滤波算法,加入空间、时间、起源三个维度的影响因子,在天气和汛期等影响因素改变时,对系统模型的控制参数进行适当调整,并且对测量噪声进行更加准确的估计,提高异常检测的准确性.实验结果证明,所提算法在保证运行时间相近的前提下,检测的错误率远低于基于遗忘因子的卡尔曼(akf)算法和基于小波的卡尔曼(wkf)算法.
|