全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多模型数据集的免疫鲁棒回归分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对传统多模型数据集回归分析方法计算时间长、模型识别准确率低的问题,提出了一种新的启发式鲁棒回归分析方法。该方法模拟免疫系统聚类学习的原理,采用b细胞网络作为数据集的分类和存储工具,通过判断数据对模型的符合度进行分类,提高了数据分类的准确性,将模型集抽取过程分解成“聚类”“回归”“再聚类”的反复尝试过程,利用并行启发式搜索逼近模型集的解。仿真结果表明,所提方法回归分析时间明显少于传统算法,模型识别准确率明显高于传统算法。根据8模型数据集分析结果,传统算法中,效果最好的是基于ransac的逐次提取算法,其平均模型识别准确率为90.37%,需53.3947s;计算时间小于0.5s的传统算法,其准确率不足1%;所提算法仅需0.5094s,其准确率达到了98.25%。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133