In 2011, the United States Department of Agriculture conducted a project in which elk (Cervus elaphus spp.), white-tailed deer (WTD) (Odocoileus virginianus), and reindeer (Rangifer tarandus) were evaluated by the single cervical tuberculin test (SCT), comparative cervical tuberculin test (CCT), and serologic tests. The rapid antibody detection tests evaluated were the CervidTB Stat-Pak (Stat-Pak), and the Dual Path Platform VetTB (DPP). Blood was collected from presumably uninfected animals prior to tuberculin injection for the SCT. A total of 1,783 animals were enrolled in the project. Of these, 1,752 (98.3%) were classified as presumably uninfected, based on originating from a captive cervid herd with no history of exposure to TB. Stat-Pak specificity estimates were 92.4% in reindeer, 96.7% in WTD, and 98.3% in elk and were not significantly different from SCT specificity estimates. Using the DPP in series on Stat-Pak antibody-positive samples improved specificity in the three species. Thirty one animals were classified as confirmed infected, based on necropsy and laboratory results, and 27/31 were antibody positive on Stat-Pak for an estimated sensitivity of 87.1%. The study findings indicate that rapid serologic tests used in series are comparable to the SCT and CCT and may have a greater ability to detect TB-infected cervids. 1. Introduction Mycobacterium bovis has been detected sporadically in captive cervids in the United States and is enzootic in free-ranging white-tailed deer (WTD) (Odocoileus virginianus) in a small geographic area of Michigan [1, 2]. A multistate outbreak of M. bovis involving 37 captive cervid herds occurred in the United States during 1990–1999 [3]. The cervid species involved in this outbreak included elk (Cervus elaphus spp.), red deer (Cervus elaphus), fallow deer (Dama dama), and sika deer (Cervus nippon). M. bovis was detected again, beginning in 2009, in elk, red deer, and fallow deer in 4 herds located in Nebraska and Indiana [4, 5]. Testing captive cervids for M. bovis in the United States is conducted as part of an official disease eradication program administered by the United States Department of Agriculture (USDA). The single cervical tuberculin skin test (SCT) was first evaluated for use in elk in the United States in 1991 [6]. Captive cervids were not routinely tested for bovine tuberculosis (TB) until these species were officially brought into the federal tuberculosis program in 1994 [7]. Currently, testing for TB in cervids is performed using tuberculin skin tests. The SCT is the initial test and consists
References
[1]
S. M. Schmitt, S. D. Fitzgerald, T. M. Cooley et al., “Bovine tuberculosis in free-ranging white-tailed deer from Michigan,” Journal of Wildlife Diseases, vol. 33, no. 4, pp. 749–758, 1997.
[2]
D. J. O'Brien, S. M. Schmitt, D. E. Berry et al., “Estimating the true prevalence of Mycobacterium bovis in hunter-harvested white-tailed deer in Michigan,” Journal of Wildlife Diseases, vol. 40, no. 1, pp. 42–52, 2004.
[3]
M. J. Gilsdorf, L. Judge, and E. D. Ebel, “Current challenges to and impacts on the U.S. national bovine tuberculosis eradication program: Mycobacterium bovis outbreaks in alternative species and surveillance performance,” in Mycobacterium Bovis Infection in Animals and Humans, C. O. Thoen, J. H. Steele, and M. J. Gilsdorf, Eds., pp. 211–225, Blackwell, Oxford, UK, 2006.
[4]
W. R. Waters, G. E. Stevens, M. A. Schoenbaum, et al., “Bovine tuberculosis in a Nebraska herd of farmed elk and fallow deer: a failure of the tuberculin skin test and opportunities for serodiagnosis,” Veterinary Medicine International, vol. 2011, Article ID 953985, 8 pages, 2011.
[5]
“Report on the committee on tuberculosis,” in Proceedings of the United States Animal Health Association (USAHA '10), pp. 621–634, 2010.
[6]
C. O. Thoen, W. J. Quinn, L. D. Miller, L. L. Stackhouse, B. F. Newcomb, and J. M. Ferrell, “Mycobacterium bovis infection in North American elk (Cervus elaphus),” Journal of Veterinary Diagnostic Investigation, vol. 4, no. 4, pp. 423–427, 1992.
[7]
M. A. Essey and J. S. Vantiem, “Mycobacterium bovis infection in captive cervidae: an eradication program,” in Mycobacterium Bovis Infection in Animals and Humans, C. O. Thoen and J. H. Steele, Eds., pp. 145–157, Iowa State University Press, Ames, Iowa, USA, 1995.
[8]
United States Department of Agriculture, “Instructions and recommended procedures for conducting tuberculosis tests in cattle and bison,” Veterinary Services Memorandum 552.15, August 2006.
[9]
D. Norden, R. Meyer, and M. A. Essey, “Evaluation of tuberculin testing in cervidae,” CADIA Technical Report 02-96, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, October 1996.
[10]
D. Norden and R. Meyer, “Evaluation of tuberculin tests in U.S. captive reindeer (Rangifer tarandus),” United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services.
[11]
W. R. Waters, M. V. Palmer, J. P. Bannantine et al., “Antibody responses in reindeer (Rangifer tarandus) infected with Mycobacterium bovis,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 6, pp. 727–735, 2005.
[12]
K. P. Lyashchenko, R. Greenwald, J. Esfandiari et al., “Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife,” Veterinary Microbiology, vol. 132, no. 3-4, pp. 283–292, 2008.
[13]
R. Greenwald, O. Lyashchenko, J. Esfandiari et al., “Highly accurate antibody assays for early and rapid detection of tuberculosis in African and Asian elephants,” Clinical and Vaccine Immunology, vol. 16, no. 5, pp. 605–612, 2009.
[14]
B. M. Buddle, T. Wilson, M. Denis et al., “Sensitivity, specificity, and confounding factors of novel serological tests used for the rapid diagnosis of bovine tuberculosis in farmed red deer (Cervus elaphus),” Clinical and Vaccine Immunology, vol. 17, no. 4, pp. 626–630, 2010.
[15]
United States Department of Agriculture, “Bovine tuberculosis eradication, uniform methods and rules,” APHIS 91-45-011, December 2004.
[16]
N. Hines, J. B. Payeur, and L. J. Hoffman, “Comparison of the recovery of Mycobacterium bovis isolates using the BACTEC MGIT 960 system, BACTEC 460 system, and Middlebrook 7H10 and 7H11 solid media,” Journal of Veterinary Diagnostic Investigation, vol. 18, no. 3, pp. 243–250, 2006.
[17]
M. Greiner and I. A. Gardner, “Epidemiologic issues in the validation of veterinary diagnostic tests,” Preventive Veterinary Medicine, vol. 45, no. 1-2, pp. 3–22, 2000.
[18]
D. Norden, R. Meyer, and M. A. Essey, “Update on the evaluation of tuberculin testing in cervidae,” CADIA Technical Report 02-96, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, October 1997.
[19]
D. J. O'Brien, S. M. Schmitt, K. P. Lyashchenko et al., “Evaluation of blood assays for detection of Mycobacterium bovis in white-tailed deer (Odocoileus virginianus) in Michigan,” Journal of Wildlife Diseases, vol. 45, no. 1, pp. 153–164, 2009.
[20]
M. V. Palmer, D. L. Whipple, and W. R. Waters, “Tuberculin skin testing in white-tailed deer (Odocoileus virginianus),” Journal of Veterinary Diagnostic Investigation, vol. 13, no. 6, pp. 530–533, 2001.