OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
碳纤维/双马树脂基复合材料在热循环过程中热应力分布的数值模拟
Keywords: 材料科学基础学科,碳纤维/双马复合材料,热循环,热应力分布,有限元分析
Abstract:
?用有限元分析方法模拟热循环过程中碳纤维/双马树脂基复合材料的热应力分布,采用抛物线屈服准则分析复合材料的潜在破坏区域,并结合有限元生死单元技术揭示复合材料在热应力作用下的微裂纹分布。结果表明,复合材料自由端处的热应力大于其内部区域,其中最大热应力位于自由端处富树脂区的纤维表面;复合材料的潜在破坏区域位于自由端沿纤维与树脂基体间的界面处,主要的损伤形式为热应力引发微裂纹导致自由端处产生界面脱粘破坏。在进一步的热循环过程中,热应力得到一定程度的缓解并重新分布,由复合材料的自由端向内部区域延伸,导致微裂纹的进一步扩展而使复合材料的界面脱粘程度加重。对cf/bmi复合材料在热循环过程中性能演化的实验结果表明,热循环效应能够引发纤维与树脂基体之间的界面处形成微裂纹,导致复合材料的界面粘接性能下降。模拟结果预期了cf/bmi复合材料在实际热循环过程中的潜在破坏区域,并解析了热循环过程中导致复合材料界面粘接性能降低的根本原因,表明模拟结果与实验结果相符。
References
[1] | 1wuliangyi,applicationstatusofadvancedcompositesinaerospace,the13thnationwidesymposiumofepoxyresinappliedtechnologydisscourse(jiangsu,chinaepoxyresinsappliedtechnologyinstitute,2009)p.117
|
[2] | (吴良义,航空航天先进复合材料现状,第十三次全国环氧树脂应用技术学术交流会论文集(江苏,中国环氧树脂应用技术学会,2009)p.117)
|
[3] | 2chenping,liaomingyi,polymersyntheticmaterialscience,thesecondedition(beijing,chemicalindustrypress,2010)p.153
|
[4] | (陈平,廖明义,高分子合成材料学,第二版(北京,化学工业出版社,2010)p.153)
|
[5] | 3zhaoqusen,lowcostofqy8911bismaleimideresinanditscomposites,materialsreview,15(10),2(2001)
|
[6] | (赵渠森,qy8911双马来酰亚胺树脂和复合材料低成本,材料导报,15(10),2(2001))
|
[7] | 5t.shimokawa,h.katoh,y.hamaguchi,s.sanbongi,h.mizuno,effectofthermalcyclingonmicrocrackingandstrengthdegradationofhightemperaturepolycompositematerialsforuseinnext-generationsststructures,journalofcompositematerials,36,885(2002)
|
[8] | 6m.c.lafarie-frenot,damagemechanismsinducedbycyclicply-stressesincarbon-epoxylaminates:environmentaleffects,internationaljournaloffatigue,28,1202(2006)
|
[9] | 7z.mei,d.d.l.chung,thermalstress-inducedthermoplasticcompositedebonding,studiedbycontactelectricalresistancemeasurement,internationaljournalofadhesionandadhesives,20,135(2000)
|
[10] | 8p.rosso,k.varadi,femacro/microanalysisofthermalresidualstressesandfailurebehaviorundertransversetensileloadofve/cf–fibrebundlecomposites,compositescienceandtechnology,66(16),3241(2006)
|
[11] | 10c.lu,p.chen,y.gao,w.qi,q.yu,thermalstressdistributionincf/epcompositeinlowearthorbit,journalofcompositematerials,44,1729(2010)
|
[12] | 4k.b.shin,c.g.kim,c.s.hong,h.h.lee,predictionoffailurethermalcyclesingraphite/epoxycompositematerialsundersimulatedlowearthorbitenvironments,compositespartb-engineering,31,223(2000)
|
[13] | 9l.g.zhao,n.a.warrior,a.c.long,amicromechanicalstudyofresidualstressanditseffectontransversefailureinpolymer-matrixcomposites,internationaljournalofsolidsandstructures,43,5449(2006)
|
[14] | 11m.gherlone,m.d.sciuva,thermo-mechanicsofundamagedanddamagedmultilayeredcompositeplates:asublaminatesfiniteelementapproach,compositestructures,81(1),125(2007)
|
[15] | 12c.lu,p.chen,b.j.yu,computersimulationofthermalresidualstressofcarbonfiber/ppeskcomposite,advancedcompositesletters,16(1),33(2007)
|
[16] | 13c.lu,p.chen,q.yu,j.l.gao,b.j.yu,thermalresidualstressdistributionincarbonfiber/novelthermalplasticcomposite,appliedcompositematerials,15,157(2008)
|
[17] | 14q.yu,p.chen,y.gao,j.j.mu,y.w.chen,c.lu,d.liu,effectsofvacuumthermalcyclingonmechanicalandphysicalpropertiesofhighperformancecarbon/bismaleimidecomposite,materialschemistryandphysics,130,1046(2011)
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|