全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Specific and Rapid Detection of Mycobacterium tuberculosis Complex in Clinical Samples by Polymerase Chain Reaction

DOI: 10.1155/2012/654694

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Tuberculosis, a global health problem and highly prevalent in India, has always been a serious problem with respect to definitive diagnosis. Polymerase chain reaction (PCR) techniques are now widely used for early detection and species differentiation of mycobacteria, but mostly with their own limitations. We aim to detect and differentiate Mycobacterium tuberculosis (Mtb) infections by choosing appropriate target sequences, ideally present in all mycobacterial species (MTB complex) and absent in others. Methods. Amplification of three target sequences from unrelated genes, namely, hsp 65 (165?bp), dnaJ (365?bp), and insertion element IS 6110 (541?bp) by PCR was carried out in clinical samples from suspected cases of tuberculosis/ mycobacterioses and healthy controls. Results. The sensitivity of this method ranged from 73.33% to 84.61%, and the specificity was 80%. The PCR method was significantly better ( and ) than both smear and culture methods. Conclusion. Our trimarker-based PCR method could specifically detect M. tuberculosis and MTB complex infection from that of major pathogenic NTM and nonpathogenic mycobacteria. This method, by well distinguishing between MTB complex and NTM, presented a fast and accurate method to detect and diagnose mycobacterial infections more efficiently and could thereby help in better patient management particularly considering the increase in mycobacterial infections due to emergence of NTM over the past decades. 1. Introduction Tuberculosis is a major public health problem with a total of 9.2 million new cases and 1.7 million deaths from tuberculosis (TB) in 2006. India accounts for one-fifth of the global TB burden (WHO 2008), which has been on the rise due to multidrug-resistant and highly virulent strains of Mycobacterium tuberculosis (Mtb) [1] and combined effect of HIV. An accurate diagnosis of tuberculosis is desirable before the start of anti-tuberculosis therapy [2]. The laboratory diagnosis of Mtb depending on acid-fast bacillus (AFB) smear can yield a result within 24?h. However, smear is not very specific for Mtb and also requires 103 to 104 organisms per mL of sputum. Bacterial culture is superior to AFB smear, both in terms of sensitivity and specificity. But, since mycobacteria have very strict growth requirements, culture-based diagnostic methods are slow. Further, diagnoses involving radiological examinations and Tuberculin test help to detect the disease to some extent, but are not very reliable in case of extrapulmonary tuberculosis. The BACTEC system however, gives a very quick result

References

[1]  Global tuberculosis control: surveillance, planning, financing: WHO report. WHO/HTM/TB/2008.393, 2008.
[2]  Framework for implementing new tuberculosis diagnostics: WHO policy framework, July 2010.
[3]  B. O'Shea, S. Khare, K. Bliss et al., “Amplified fragment length polymorphism reveals genomic variability among Mycobacterium avium subsp. paratuberculosis isolates,” Journal of Clinical Microbiology, vol. 42, no. 8, pp. 3600–3606, 2004.
[4]  A. Weil, B. B. Plikaytis, W. R. Butler, C. L. Woodley, and T. M. Shinnick, “The mtp40 gene is not present in all strains of Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 34, no. 9, pp. 2309–2311, 1996.
[5]  S. Homolka, S. Niemann, D. G. Russell, and K. H. Rohde, “Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival,” PLoS Pathogens, vol. 6, no. 7, Article ID e1000988, 2010.
[6]  R. L. Peres, E. L. N. Maciel, C. G. Morais et al., “Comparison of two concentrations of NALC-NaOH for decontamination of sputum for mycobacterial culture,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 12, pp. 1572–1575, 2009.
[7]  C. C. Pao, T. S. B. Yen, J. B. You, J. S. Maa, E. H. Fiss, and C. H. Chang, “Detection and identification of Mycobacterium tuberculosis by DNA amplification,” Journal of Clinical Microbiology, vol. 28, no. 9, pp. 1877–1880, 1990.
[8]  S. I. Takewaki, K. Okuzumi, H. Ishiko, K. I. Nakahara, A. Ohkubo, and R. Nagai, “Genus-specific polymerase chain reaction for the mycobacterial dnaJ gene and species-specific oligonucleotide probes,” Journal of Clinical Microbiology, vol. 31, no. 2, pp. 446–450, 1993.
[9]  L. F. F. Kox, D. Rhienthong, A. M. Miranda et al., “A more reliable PCR for detection of Mycobacterium tuberculosis in clinical samples,” Journal of Clinical Microbiology, vol. 32, no. 3, pp. 672–678, 1994.
[10]  AcaStat Software, Merchant Mill Terrace, Leesberg, Va, USA, http://www.acastat.com/.
[11]  P. Del Portillo, L. A. Murillo, and M. E. Patarroyo, “Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis,” Journal of Clinical Microbiology, vol. 29, no. 10, pp. 2163–2168, 1991.
[12]  H. Park, H. Jang, C. Kim et al., “Detection and identification of mycobacteria by amplification of the internal transcribed spacer regions with genus- and species-specific PCR primers,” Journal of Clinical Microbiology, vol. 38, no. 11, pp. 4080–4085, 2000.
[13]  M. P. P. Obieta, C. F. Ang, and M. Y. P. Obieta, “Evaluation of a PCR amplification method for detection of mycobacterial DNA in formalin-fixed paraffin embedded skin tissues,” Philippine Journal of Microbiology and Infectious Diseases, vol. 37, pp. 33–37, 2008.
[14]  J. Lachnik, B. Ackermann, A. Bohrssen et al., “Rapid-cycle PCR and fluorimetry for detection of mycobacteria,” Journal of Clinical Microbiology, vol. 40, no. 9, pp. 3364–3373, 2002.
[15]  P. M. W. Hermans, A. R. J. Schuitema, D. Van Soolingen et al., “Specific detection of Mycobacterium tuberculosis complex strains by polymerase chain reaction,” Journal of Clinical Microbiology, vol. 28, no. 6, pp. 1204–1213, 1990.
[16]  K. J. Williams, C. L. Ling, C. Jenkins, S. H. Gillespie, and T. D. McHugh, “A paradigm for the molecular identification of Mycobacterium species in a routine diagnostic laboratory,” Journal of Medical Microbiology, vol. 56, no. 5, pp. 598–602, 2007.
[17]  L. L. Flores, M. Pai, J. M. Colford Jr., and L. W. Riley, “In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression,” BMC Microbiology, vol. 5, article 55, 2005.
[18]  S. Das, C. N. Paramasivan, D. B. Lowrie, R. Prabhakar, and P. R. Narayanan, “IS6110 restriction fragment length polymorphism typing of clinical isolates of Mycobacterium tuberculosis from patients with pulmonary tuberculosis in Madras, South India,” Tubercle and Lung Disease, vol. 76, no. 6, pp. 550–554, 1995.
[19]  K. H. Lok, W. H. Benjamin Jr., M. E. Kimerling et al., “Molecular differentiation of Mycobacterium tuberculosis strains without IS6110 insertions,” Emerging Infectious Diseases, vol. 8, no. 11, pp. 1310–1313, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133