全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续流微生物电解池处理有机废水同步生产甲烷

DOI: 10.3724/SP.J.1145.2015.02022, PP. 854-859

Keywords: 连续流微生物电解池,废水处理,产甲烷,能量分析,外加电压,水力停留时间

Full-Text   Cite this paper   Add to My Lib

Abstract:

为进一步提高有机废水的厌氧处理效率,同时实现能源物质的回收,采用微生物电解池并结合连续流工艺处理有机废水并同步回收甲烷,系统地研究不同水力停留时间、有机负荷、外加电压对微生物电解池内基质浓度的降解、甲烷生产速率等方面的影响.结果表明,在同一有机负荷下,随着外加电压(0.6v,1.0v,1.2v)的升高,微生物电解池cod的去除效率和甲烷生产率也同时提高.在进水cod浓度为1178mgl-1、水力停留时间为8h、外加电压为1.2v的条件下,其cod去除率、甲烷浓度、甲烷产生速率分别为97.7%、96%、1071mll-1d-1,较普通厌氧发酵(对照组)分别提高了31.5%、13.6%、123%;当进水cod浓度为4812mgl-1、水力停留时间为20h、外加电压为1.2v时,甲烷的产生速率达1888?ml?l-1?d-1,达理论产率的98.0%,而此条件下对照组甲烷产生速率仅为理论值的64.9%.说明连续流微生物电解池能够明显提高有机废水的处理效率,并实现处理过程中稳定回收甲烷的目的.高通量分析结果显示:微生物电解池阳极碳毡优势菌群为methanogens与geobactersp.,其丰度分别占总菌群的53.3%和7.5%,而对照组碳毡相应丰度仅为25.2%和0.7%.此外,研究发现有机负荷与电解池能量的消耗呈负相关,当外加电压为0.6v时,有机负荷由3.5?kg?m-3d-1提升至5.7?kg?m-3d-1时,电解池能量消耗降低了79.3%.据此认为,通过优化水力停留时间和外加电压来处理有机废水并同步生产甲烷是可行的.

References

[1]  3tartakovskyb,manuelm-f,wangh,guiots.highratemembrane-lessmicrobialelectrolysiscellforcontinuoushydrogenproduction[j].intjhydrogenenergy,2009,34(2):672-677
[2]  9sasakik,moritam,sasakid,hiranos,matsumoton,watanabea,ohmuran,igarashiy.abioelectrochemicalreactorcontainingcarbonfibertextilesenablesefficientmethanefermentationfromgarbageslurry[j].bioresourtechnol,2011,102(13):6837-6842
[3]  10batlle-vilanovap,puigs,gonzalez-olmosr,vilajeliu-ponsa,ba?erasl,balaguermd,colprimj.assessmentofbioticandabioticgraphitecathodesforhydrogenproductioninmicrobialelectrolysiscells[j].intjhydrogenenergy,2014,39(3):1297-1305
[4]  11chaek-j,choim-j,kimk-y,ajayiff,changi-s,kimis.asolar-poweredmicrobialelectrolysiscellwithaplatinumcatalyst-freecathodetoproducehydrogen[j].environscitechnol,2009,43(24):9525-9530
[5]  12zhangy,merrillmd,loganbe.theuseandoptimizationofstainlesssteelmeshcathodesinmicrobialelectrolysiscells[j].intjhydrogenenergy,2010,35(21):12020-12028
[6]  13soussanl,riessj,erableb,deliam-l,bergela.electrochemicalreductionofco2catalysedbygeobactersulfurreducensgrownonpolarizedstainlesssteelcathodes[j].electrochemcommun,2013,28:27-30
[7]  14pocaznoid,calmeta,etcheverryl,erableb,bergela.stainlesssteelisapromisingelectrodematerialforanodesofmicrobialfuelcells[j].energyenvironsci,2012,5(11):9645
[8]  15bot,zhux,zhangl,taoy,hex,lid,yanz.anewupgradedbiogasproductionprocess:couplingmicrobialelectrolysiscellandanaerobicdigestioninsingle-chamber,barrel-shapestainlesssteelreactor[j].electrochemcommun,2014,45:67-70
[9]  19ivanovi,renl,siegertm,loganbe.aquantitativemethodtoevaluatemicrobialelectrolysiscelleffectivenessforenergyrecoveryandwastewatertreatment[j].intjhydrogenenergy,2013,38(30):13135-13142
[10]  20gil-carreral,escapaa,morenor,morána.reducedenergyconsumptionduringlowstrengthdomesticwastewatertreatmentinasemi-pilottubularmicrobialelectrolysiscell[j].jenvironmanage,2013,122:1-7
[11]  21peytonbm,characklisw.astatisticalanalysisoftheeffectofsubstrateutilizationandshearstressonthekineticsofbiofilmdetachment[j].biotechnolbioeng,1993,41(7):728-735
[12]  24wagnerrc,calldf,loganbe.optimalsetanodepotentialsvaryinbioelectrochemicalsystems[j].environscitechnol,2010,44(16):6036-6041
[13]  25hamelershv,terheijnea,sleutelsth,jeremiasseaw,strikdp,buismancj.newapplicationsandperformanceofbioelectrochemicalsystems[j].applmicrobiolbiotechnol,2010,85(6):1673-1685
[14]  26calldf,wagnerrc,loganbe.hydrogenproductionbygeobacterspeciesandamixedconsortiuminamicrobialelectrolysiscell[j].applenvironmicrobiol,2009,75(24):7579-7587
[15]  1jinl,zhangg,tianh.currentstateofsewagetreatmentinchina[j].waterres,2014,66:85-98
[16]  2wagnerrc,reganjm,ohs-e,zuoy,loganbe.hydrogenandmethaneproductionfromswinewastewaterusingmicrobialelectrolysiscells[j].waterres,2009,43(5):1480-1488
[17]  4loganbe,calld,chengs,hamelershv,sleutelsth,jeremiasseaw,rozendalra.microbialelectrolysiscellsforhighyieldhydrogengasproductionfromorganicmatter[j].environscitechnol,2008,42(23):8630-8640
[18]  5sasakik,sasakid,moritam,hiranos-i,matsumoton,ohmuran,igarashiy.bioelectrochemicalsystemstabilizesmethanefermentationfromgarbageslurry[j].bioresourtechnol,2010,101(10):3415-3422
[19]  6sunr,zhoua,jiaj,liangq,liuq,xingd,renn.characterizationofmethaneproductionandmicrobialcommunityshiftsduringwasteactivatedsludgedegradationinmicrobialelectrolysiscells[j].bioresourcetechnol,2015,175:68-74
[20]  7sunr,xingd,jiaj,liuq,zhoua,bais,renn.optimizationofhigh-solidwasteactivatedsludgeconcentrationforhydrogenproductioninmicrobialelectrolysiscellsandmicrobialcommunitydiversityanalysis[j].intjhydrogenenergy,2014,39(35):19912-19920
[21]  8ranz,gefuz,kumarja,chaoxiangl,xuh,linl.hydrogenandmethaneproductioninabio-electrochemicalsystemassistedanaerobicbaffledreactor[j].intjhydrogenenergy,2014,39(25):13498-13504
[22]  16dasilvas,basséguyr,bergela.electrochemicaldeprotonationofphosphateonstainlesssteel[j].electrochimacta,2004,49(26):4553-4561
[23]  17munozld,erableb,etcheverryl,riessj,basséguyr,bergela.combiningphosphatespeciesandstainlesssteelcathodetoenhancehydrogenevolutioninmicrobialelectrolysiscell(mec)[j].electrochemcommun,2010,12(2):183-186
[24]  18zhaohz,zhangy,changyy,lizs.conversionofasubstratecarbonsourcetoformicacidforcarbondioxideemissionreductionutilizingseries-stackedmicrobialfuelcells[j].jpowersources,2012,217:59-64
[25]  22escapaa,gil-carreral,garciav,morana.performanceofacontinuousflowmicrobialelectrolysiscell(mec)fedwithdomesticwastewater[j].bioresourtechnol,2012,117:55-62
[26]  23ohst,martinad.thermodynamicequilibriummodelinanaerobicdigestionprocess[j].biochemengj,2007,34(3):256-266
[27]  27marsilie,sunj,bonddr.voltammetryandgrowthphysiologyofgeobactersulfurreducensbiofilmsasafunctionofgrowthstageandimposedelectrodepotential[j].electroanaly,2010,22(7-8):865-874
[28]  28zhaoz,zhangy,chens,quanx,yuq.bioelectrochemicalenhancementofanaerobicmethanogenesisforhighorganicloadratewastewatertreatmentinaup-flowanaerobicsludgeblanket(uasb)reactor[j].scirep,2014,4:157-162

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133