OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
基于高通量测序的杨树人工林根际和非根际细菌群落结构比较
DOI: 10.3724/SP.J.1145.2015.03018, PP. 967-973
Keywords: 杨树人工林,根际效应,细菌群落多样性,454高通量测序
Abstract:
为准确分析定殖在根际和非根际土壤的细菌类群组成,采用454高通量测序技术,对杨树人工林根际和非根际细菌群落进行对比分析.本次测序共获得原始序列70081条,过滤后序列总数为44009条.物种注释结果显示,根际土壤包含145个细菌属,非根际土壤包含141个细菌属.根际和非根际相对丰度>4%的属有8个,它们是acidobacteriumgp1、acidobacteriumgp3、acidobacteriumgp6、gemmatimonas、bradyrhizobium、burkholderia、streptomyces和acidobacteriumgp4,同一属的细菌类群在根际和非根际土壤中相对丰度存在显著差异(p<0.05).α多样性分析表明,根际土壤细菌群落多样性高于非根际土壤,但差异未达到显著水平.细菌群落排序结果较好地反映了土壤细菌群落从根际到非根际的变化和不同取样点的空间差异,根际效应对细菌群落差异的贡献率占21.2%.β多样性分析表明,杨树人工林根际和非根际土壤样品间细菌群落组成具有较大差异,根际和非根际土壤中各含有一些特有属(根际15个,非根际11个),此外还发现丰度发生显著变化的23个属,主要以纤维素降解菌和固氮菌属为主.本研究表明,根系对根际微生物的选择是导致根际微生物群落组成和结构发生显著差异的重要机制,这将对根土界面碳氮循环产生显著影响.
References
[1] | 40vanheespaw,lundstr?mu,andmorthcm.dissolutionofmicroclineandlabradoriteinaforestohorizonextract:theeffectofnaturallyoccurringorganicacids[j].chemgeol,2002,189:199-211
|
[2] | 44chengwx,partonwj,gonzalez-melerma,phillipsr,asaos,mcnickleg,brzosteke,jastrowjd.synthesisandmodelingperspectiveofrhizospherepriming[j].newphytol,2013,doi:10.1111/nph.12440
|
[3] | 45dijkstrafa,chengwx.interactionsbetweensoilandtreerootsacceleratelong-termsoilcarbondecomposition[j].ecollett,2007a,10:1046-1053
|
[4] | 46tobermanh,chencr,xuzh.rhizosphereeffectsonsoilnutrientdynamicsandmicrobialactivityinanaustraliantropicallowlandrainforest[j].soilres,2011,49:652-660
|
[5] | 3ryanpr,delhaizee.functionandmechanismoforganicanionexudationfromplantroots[j].annrevplantphysiolmolbiol,2001,52:527-560
|
[6] | 4bergg,grubem,schloterm,smallak.unravelingtheplantmicrobiome:lookingbackandfutureperspectives[j].frontmicrobiol,2014,5:1-6
|
[7] | 11roeschlf,fulthorperr,rivaa,casellag,hadwinak,kentad,daroubsh,camargofa,farmeriewg,triplettew.pyrosequencingenumeratesandcontrastssoilmicrobialdiversity[j].ismej,2007,1:283-290
|
[8] | 12buéem,reichm,muratc,morine,nilssonrh,urozs,andmartinf.454pyrosequencinganalysesofforestsoilsrevealanunexpectedhighfungaldiversity[j].newphytol,2009,184:449-456
|
[9] | 13jonesrt,robesonms,laubercl,hamadym,knightr,andfierern.acomprehensivesurveyofsoilacidobacterialdiversityusingpyrosequencingandclonelibraryanalyses[j].ismej,2009,3:442-453
|
[10] | 14gomez-alvarezv,tealtk,schmidttm.systematicartifactsinmetagenomesfromcomplexmicrobialcommunities[j].ismej,2009,11:1314-1317
|
[11] | 19ryanrp,germainek,franksa,ryandj,dowlingdn.bacterialendophytes:recentdevelopmentsandapplications[j].femsmicrobiollett,2008,278:1-9
|
[12] | 21yangyh,fangjy,jingy,chenj,hanwx.above-andbelow-groundbiomassallocationintibetangrasslands[j].jvegsci,2009,20:177-184
|
[13] | 22jonesrj,thomannl,yej.precisionstabilizationoffemtosecondlaserstohigh-finesseopticalcavities[j].physreva,2009,69:051803-1-4
|
[14] | 23haicharfz,marolc,bergeo,rangel-castroji,prosserji,balesdentj,heulint,achouakw.planthosthabitatandrootexudatesshapesoilbacterialcommunitystructure[j].ismej,2008,2:1221-1230
|
[15] | 24bergg,smallak.plantspeciesandsoiltypecooperativelyshapethestructureandfunctionofmicrobialcommunitiesintherhizosphere[j].femsmicrobiolecol,2009,68:1-13
|
[16] | 25graystonsj,wangsq,campbellcd,edwardsac.selectiveinfluenceofplantspeciesonmicrobialdiversityintherhizosphere[j].soilbiolbiochem,1998,30:369-378
|
[17] | 26graystonsj,griffithgs,mawdslcyjl,campbellcd,bardgettrd.accountingforvariabilityinsoilmicrobialcommunitiesoftemperateuplandgrasslandecosystem[j].soilbiolbiochem,2001,33:533-551
|
[18] | 27petram,davidc,chinghongy.developmentofspecificrhizospherebacterialcommunitiesinrelationtoplantspecies,nutritionandsoiltype[j].plantsoil,2004,261:199-208
|
[19] | 28urozs,calvarusoc,turpaultmp,pierratjc,mustinc,frey-klettp.effectofthemycorrhizosphereonthegenotypicandmetabolicdiversityofthesoilbacterialcommunitiesinvolvedinmineralweatheringinaforestsoil[j].applenvironmicrobiol,2007,73:3019-3027
|
[20] | 29cockingec.endophyticcolonisationofplantrootsbynitrogen-fixingbacteria[j].plantsoil,2003,252:169-175
|
[21] | 30bergg,zachowc,lottmannj,g?tzm,costar,andsmallak.impactofplantspeciesandsiteonrhizosphere-associatedfungiantagonistictoverticilliumdahliaekleb[j].applenvironmicrobiol,2005,71:4203-4213
|
[22] | 31soodsg.chemotacticresponseofplant-growth-promotingbacteriatowardsrootsofvesicular-arbuscularmycoorhizaltomatoplants[j].femsmicrobiolecol,2003,45:219-227
|
[23] | 32timonens,andhurekt.characterizationofculturablebacterialpopulationsassociatingwithpinussylvestris-suillusbovinusmycorrhizospheres[j].canjmicrobiol,2006,52:769-778
|
[24] | 36pintonr,varaniniz,nannipierip.therhizosphere:biochemistryandorganicsubstancesatthesoil-plantinterface[m].newyork:marceldekker,,2001,44(3):372
|
[25] | 37farrarj,hawesm,jonesd,lindows.howrootscontrolthefluxofcarbontotherhizosphere[j].ecology,2003,84:827-837
|
[26] | 38kuzyakovy,raskatovav,kaupenjohannm.turnoveranddistributionofrootexudatesofzeamays[j].plantsoil,2003,254:317-327
|
[27] | 1kuzyakovy,domanskig.carboninputbyplantsintothesoil[j].jplantnutrsoilsci,2000,163:421-431
|
[28] | 2hartmanna,rothballerm,schmidm.lorenzhiltner,apioneerinrhizospheremicrobialecologyandsoilbacteriologyresearch[j].plantsoil,2008,312:7-14
|
[29] | 5孙翠玲,朱占学,王珍,佟超然.杨树人工林地力退化及维护与提高土壤肥力技术的研究[j].林业科学,1995,31(6):506-511[suncl,zhuzx,wangz,tongcr.studyonthesoildegradationofthepoplarplantationandthetechniquetopreserveandincreasesoilfertility[j].scisilvsin,1995,31(6):506-
|
[30] | 6刘福德,刘颜泉,王华田,孔令刚,王迎.杨树人工林连作效应[j].水土保持学报,2005,18(2):102-105[liufd,liuyq,wanght,konglg,wangy.effectofcontinuouscroppingonpoplarplantation[j].jsoilwaterconserv,2005,18(2):102-
|
[31] | 7王延平,王华田,谭秀梅,姜岳忠,孔令刚.杨树人工林品种更替连作与非更替连作根际效应的比较[j].生态学报,2010,30(5):1379-1389[wangyp,wanght,tanxm,jiangyz,konglg.comparisononrhizosphereeffectofcultivaralternationandnon-alternationcontinuouscroppingpoplar(populusdeltoids)plantation[j].actaecolsin,2010,30(5):1379-
|
[32] | 8许坛,王华田,王延平,韩亚飞,姜岳忠,朱婉芮.杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[j].应用与环境生物学报,2014,20(3):491-498[xut,wanght,wangyp,hanyf,jiangyz,zhuwr.correlationbetweensoilnutrientavailabilityandbacteriacommunitysuccessioninpoplarplantations[j].chinjapplenvironbiol,2014,20(3):491-
|
[33] | 9acosta-martinezv,dowds,suny,andallenv.tag-encodedpyrosequencinganalysisofbacterialdiversityinasinglesoiltypeasaffectedbymanagementandlanduse[j].soilbiolbiochem,2008,40:2762-2770
|
[34] | 10husesm,dethlefsen,l,huberja,welchdm,relmanda,soginml.exploringmicrobialdiversityandtaxonomyusingssurrnahypervariabletagsequencing[j].plosgenet,2008,4:e1000255
|
[35] | 15stéphaneu,marcb,claudem,pascalefk,francism.pyrosequencingrevealsacontrastedbacterialdiversitybetweenoakrhizosphereandsurroundingsoil[j].environmicrobiolrep,2010,2(2):281-288
|
[36] | 16lixz,ruijp,maoyj.dynamicsofthebacterialcommunitystructureintherhizosphereofamaizecultivar[j].soilbiolbiochem,2014,68:392-401
|
[37] | 17hartmanna,schmidm,tuinendv,bergg.plant-drivenselectionofmicrobes[j].plantsoil,2009,321:235-257
|
[38] | 18jonesdl,hodgea,kuzyakovy.plantandmycorrhizalregulationofrhizodeposition[j].newphytol,2004,163:459-480
|
[39] | 20lugtenbergb,kamilovaf.plant-growth-promotingrhizobacteria[j].annrevmicrobiol,2009,63:541-556
|
[40] | 33darrahpr,jungka.phosphataseactivityintherhizosphereanditsrelationtothedepletionofsoilorganicphosphorus[j].biolfertsoils,1991,3:199-204
|
[41] | 34singh,brajeshk,peterm,andrews,whiteleyjc.unravellingrhizosphere-microbialinteractions:opportunitiesandlimitations[j].trendsmicrobial,2004,12:386-393
|
[42] | 35grahamrd.genotypicdifferencesintolerancetomanaganesedifficiency[a]//grahamrd,hannamrj,urennc.managaneseinsoilandplant[c].thenetherland:kluweracademicpublishers,1988:75-85
|
[43] | 39jonesrt,robesonms,laubercl,hamadym,knightr,andfierern.acomprehensivesurveyofsoilacidobacterialdiversityusingpyrosequencingandclonelibraryanalyses[j].ismej,2009,3:442-453
|
[44] | 41vanheespaw,godbolddl,jentschkeg,andjonesdl.impactofectomycorrhizasontheconcentrationandbiodegradationofsimpleorganicacidsinaforestsoil[j].eurjsoilsci,2003,54:697-706
|
[45] | 42haicharfz,santaellac,heulint,achouakw.rootexudatesmediatedinteractionsbelowground[j].soilbiolbiochem,2014,77:69-80
|
[46] | 43kuzyakovy.primingeffects:interactionsbetweenlivinganddeadorganicmatter[j].soilbiolbiochem,2010,42:1363-1371
|
[47] | 47kuzyakovy,xuxl.competitionbetweenrootsandmicroorganismsfornitrogen:mechanismsandecologicalrelevance[j].newphytol,2013,198:656-669
|
[48] | 48孙悦,徐兴良,kuzyakovy.根际激发效应的发生机制及其生态重要性[j].植物生态学报,2014,38(1):62-75[suny,xuxl,kuzyakovy.mechanismsofrhizosphereprimingeffectsandtheirecologicalsignificance[j].chinjplantecol,2014,38(1):62-
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|