全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

产甲烷生化代谢途径研究进展

DOI: 10.3724/SP.J.1145.2014.08019, PP. 1-9

Keywords: 产甲烷菌,生化代谢,还原co2途径,乙酸途径,甲基营养途径

Full-Text   Cite this paper   Add to My Lib

Abstract:

微生物产甲烷过程产生的甲烷约占全球甲烷产量的74%.产甲烷过程对生物燃气生产和全球气候变暖等都有着重要的意义.本文综述了产甲烷菌的具体生化代谢途径,其本质是产甲烷菌利用细胞内一系列特殊的酶和辅酶将co2或甲基化合物中的甲基通过一系列的生物化学反应还原成甲烷.在这一过程中,产甲烷菌细胞能够形成钠离子或质子跨膜梯度,驱动细胞膜上的atp合成酶将adp转化成atp以获得能量.根据底物类型的不同,可以将该过程分为3类:还原co2途径、乙酸途径和甲基营养途径.还原co2途径是以h2或甲酸作为主要的电子供体还原co2产生甲烷,其中涉及到一个最新的发现――电子歧化途径;乙酸途径是乙酸被裂解产生甲基基团和羧基基团,随后,羧基基团被氧化产生电子供体h2用于还原甲基基团;甲基营养途径是以简单甲基化合物作为底物,以外界提供的h2或氧化甲基化合物自身产生的还原当量作为电子供体还原甲基化合物中的甲基基团.通过这3种途径产甲烷的过程中,每消耗1mol底物所产生atp的顺序为还原co2途径>甲基营养途径>乙酸途径.由于产甲烷菌自身难以分离培养,未来将主要通过现代的生物技术和计算机技术,包括基因工程和代谢模型构建等最新技术来研究产甲烷菌的生化代谢过程以及其与其它菌群之间的相互作用机制,以便将其应用于生产实践.

References

[1]  1ferryjg,housech.thestepwiseevolutionofearlylifedrivenbyenergyconservation[j].molbiolevol,2006,23(6):1286-1292
[2]  2battistuzzifu,feijaoa,hedgessb.agenomictimescaleofprokaryoteevolution:insightsintotheoriginofmethanogenesis,phototrophy,andthecolonizationofland[j].bmcevolbiol,2004,4(44):1-14
[3]  3ferryjg.fundamentalsofmethanogenicpathwaysthatarekeytothebiomethanationofcomplexbiomass[j].curropinmicrobiol,2011,22(3):351-357
[4]  4lelieveldj,crutzenp,brühlc.climateeffectsofatmosphericmethane[j].chemosphere,1993,26(1):739-768
[5]  5陈槐,周舜,吴宁,王艳芬,罗鹏,石福孙.湿地甲烷的产生、氧化及排放通量研究进展[j].应用与环境生物学报,2006,12(5):726-733[chenh,zhous,wun,wangyf,luop,shifs.advanceinstudiesonproduction,oxidationandemissionfluxofmethanefromwetlands[j].chinjapplenvironbiol,2006,12(5):726-
[6]  19thauerrk,kasterak,seedorfh,buckelw,hedderichr.methanogenicarchaea:ecologicallyrelevantdifferencesinenergyconservation[j].natrevmicrobiol,2008,6(8):579-591
[7]  30springere,sachsms,woesecr,boonedr.partialgenesequencesfortheasubunitofmethyl-coenzymemreductase(mcri)asaphylogenetictoolforthefamilymethanosarcinaceae[j].intjsystbacteriol,1995,45(3):554-559
[8]  44rotherm,oelgeschl?gere,metcalfww.geneticandproteomicanalysesofcoutilizationbymethanosarcinaacetivorans[j].archmicrobiol,2007,188(5):463-472
[9]  45ferryjg.coinmethanogenesis[j].annmicrobiol,2010,60(1):1-12
[10]  46deppenmeieru,müllerv,gottschalkg.pathwaysofenergyconservationinmethanogenicarchaea[j].archmicrobiol,1996,165(3):149-163
[11]  48ensslem,zirngiblc,linderd,thauerr.coenzymef420dependentn5,n10-methylenetetrahydromethanopterindehydrogenaseinmethanolgrownmethanosarcinabarkeri[j].archmicrobiol,1991,155(5):483-490
[12]  49mak,linderd,stetterk,thauerr.purificationandpropertiesofn5,n10-methylenetetrahydromethanopterinreductase(coenzymef420-dependent)fromtheextremethermophilemethanopyruskandleri[j].archmicrobiol,1991,155(6):593-600
[13]  50mak,thauerrk.purificationandpropertiesofn5,n10-methylenetetrahydromethanopterinreductasefrommethanobacteriumthermoautotrophicum(strainmarburg)[j].eurjbiochem,1990,191(1):187-193
[14]  51weissds,g?rtnerp,thauerrk.theenergeticsandsodium-iondependenceofn5-methyltetrahydromethanopterin:coenzymemmethyltransferasestudiedwithcob(i)alaminasmethylacceptorandmethylcob(iii)alaminasmethyldonor[j].eurjbiochem,1994,226(3):799-809
[15]  58grahameda,demolle.partialreactionscatalyzedbyproteincomponentsoftheacetyl-coadecarbonylasesynthaseenzymecomplexfrommethanosarcinabarkeri[j].jbiolchem,1996,271(14):8352-8358
[16]  71leighja,alberssv,atomih,allerst.modelorganismsforgeneticsinthedomainarchaea:methanogens,halophiles,thermococcalesandsulfolobales[j].femsmicrobiolrev,2011,35(4):577-608
[17]  72watkinsaj,rousseleg,parkesrj,sassh.glycinebetaineasadirectsubstrateformethanogens(methanococcoidesspp.)[j].applenvironmicrob,2014,80(1):289-293
[18]  73gardnerwl,whitmanwb.expressionvectorsformethanococcusmaripaludis:overexpressionofacetohydroxyacidsynthaseandbeta-galactosidase[j].genetics,1999,152(4):1439-1447
[19]  77gussam,rotherm,zhangjk,kulkkarnig,metcalfww.newmethodsfortightlyregulatedgeneexpressionandhighlyefficientchromosomalintegrationofclonedgenesformethanosarcinaspecies[j].archaea,2008,2(3):193-203
[20]  78farkasja,pickingjw,santangelotj.genetictechniquesforthearchaea[j].annurevgenet,2013,47:539-561
[21]  79costakc,leighja.metabolicversatilityinmethanogens[j].curropinmicrobiol,2014,29:70-75
[22]  80welanderpv,metcalfww.mutagenesisofthec1oxidationpathwayinmethanosarcinabarkeri:newinsightsintothemtr/merbypasspathway[j].jbacteriol,2008,190(6):1928-1936.
[23]  81lessnerdj,lhul,wahalcs,ferryjg.anengineeredmethanogenicpathwayderivedfromthedomainsbacteriaandarchaea[j].mbio,2010,1(5):1-4
[24]  84gonnermanmc,benedictmn,feistam,metcalfww,pricend.genomicallyandbiochemicallyaccuratemetabolicreconstructionofmethanosarcinabarkerifusaro,img746[j].biotechnolj,2013,8(9):1070-1079
[25]  85kumarvs,ferryjg,maranascd.metabolicreconstructionofthearchaeonmethanogenmethanosarcinaacetivorans[j].bmcsystbiol,2011,5(28):1-10
[26]  86oberhardtma,palssonb?,papinja.applicationsofgenome-scalemetabolicreconstructions[j].molsystbiol,2009,5(1):1-15
[27]  6lowedc.globalchange:agreensourceofsurprise[j].nature,2006,439(7073):148-149
[28]  7whitmanwb,bowentl,boonedr.themethanogenicbacteria[m].springer,2006
[29]  8garciajl,patelbkc,ollivierb.taxonomic,phylogenetic,andecologicaldiversityofmethanogenicarchaea[j].anaerobe,2000,6(4):205-226
[30]  9woesecr,kandlero,wheelisml.towardsanaturalsystemoforganisms-proposalforthedomainarchaea,bacteria,andeucarya[j].procnatlacadsciusa,1990,87(12):4576-4579
[31]  10sakais,imachih,hanadas,ohashia,haradah,kamagatay.methanocellapaludicolagen.nov.,spnov.,amethane-producingarchaeon,thefirstisolateofthelineage‘riceclusteri’,andproposalofthenewarchaealordermethanocellalesord.nov[j].intjsystevolmicr,2008,58:929-936
[32]  11paulk,nonohjo,mikulskil,brunea.“methanoplasmatales,”thermoplasmatales-relatedarchaeaintermitegutsandotherenvironments,aretheseventhorderofmethanogens[j].applenvironmicrob,2012,78(23):8245-8253
[33]  12quastc,pruessee,yilmazp,gerkenj,schweert,yarzap,pepliesj,glocknerfo.thesilvaribosomalrnagenedatabaseproject:improveddataprocessingandweb-basedtools[j].nucleicacidsres,2013,41:590-596
[34]  13conradr.controlofmicrobialmethaneproductioninwetlandricefields[j].nutrcyclagroecosys,2002,64(1-2):59-69
[35]  14傅霖,辛明秀.产甲烷菌的生态多样性及工业应用[j].应用与环境生物学报,2009,15(2):574-578[ful,xinmx.ecologicaldiversityandindustrialapplicationofmethanogens.chinjapplenvironbiol,2009,15(2):574-
[36]  15leadbetterjr,breznakja.physiologicalecologyofmethano-brevibactercuticularissp.novandmethanobrevibactercurvatussp.nov.,isolatedfromthehindgutofthetermitereticulitermesflavipes[j].applenvironmicrob,1996,62(10):3620-3631
[37]  16whitmanwb,ankwandae,wolfers.nutritionandcarbonmetabolismofmethanococcusvoltae[j].jbacteriol,1982,149(3):852-863
[38]  17garciajl.taxonomyandecologyofmethanogens[j].femsmicrobiollett,1990,87(3-4):297-308
[39]  18ferryjg.enzymologyofone-carbonmetabolisminmethanogenicpathways[j].femsmicrobiolrev,1999,23(1):13-38
[40]  20abkenh-j,tietzem,brodersenj,b?umers,beifussu,deppenmeieru.isolationandcharacterizationofmethanophenazineandfunctionofphenazinesinmembrane-boundelectrontransportofmethanosarcinamazeig?1[j].jbacteriol,1998,180(8):2027-2032
[41]  21thauerrk.biochemistryofmethanogenesis:atributetomarjorystephenson[j].microbiol-sgm,1998,144:2377-2406
[42]  22taylorcd,wolfers.structureandmethylationofcoenzymem(hsch2ch2so3)[j].jbiolchem,1974,249(15):4879-4885
[43]  23hedderichr,whitmanwb.physiologyandbiochemistryofthemethane-producingarchaea[m].springer,2006
[44]  24cheesemanp,toms-wooda,wolfer.isolationandpropertiesofafluorescentcompound,factor420,frommethanobacteriumstrainmoh[j].jbacteriol,1972,112(1):527-531
[45]  25edwardst,mcbrideb.newmethodfortheisolationandidentificationofmethanogenicbacteria[j].applmicrobiol,1975,29(4):540-545
[46]  26largepj.methylotrophyandmethanogenesis[m].washington:americansocietyformicrobiology,1983
[47]  27liuy,whitmanwb.metabolic,phylogenetic,andecologicaldiversityofthemethanogenicarchaea[j].annnyacadsci,2008,1125(1):171-189
[48]  28shimas,thauerrk.methyl-coenzymemreductaseandtheanaerobicoxidationofmethaneinmethanotrophicarchaea[j].curropinmicrobiol,2005,8(6):643-648
[49]  29morrisr,schauer-gimeneza,bhattadu,kearneyc,strubleca,zitomerd,makijs.methylcoenzymemreductase(mcra)geneabundancecorrelateswithactivitymeasurementsofmethanogenich2/co2-enrichedanaerobicbiomass[j].microbbiotechnol,2014,7(1):77-84
[50]  31lutonpe,waynejm,sharprj,rileypw.themcrageneasanalternativeto16srrnainthephylogeneticanalysisofmethanogenpopulationsinlandfill[j].microbiology,2002,148(11):3521-3530
[51]  32friedmannhc,kleina,thauerrk.structureandfunctionofthenickelporphinoid,coenzymef430,andofitsenzyme,methylcoenzymemreductase[j].femsmicrobiollett,1990,87(3):339-348
[52]  33prakashd,wuy,suhs-j,duinec.elucidatingtheprocessofactivationofmethyl-coenzymemreductase[j].jbacteriol,2014,196:2491-2498
[53]  34ermleru,grabarsew,shimas,goubeaudm,thauerrk.crystalstructureofmethyl-coenzymemreductase:thekeyenzymeofbiologicalmethaneformation[j].science,1997,278(5342):1457-1462
[54]  35rosperts,linderd,ellermannj,thauerrk.twogeneticallydistinctmethyl-coenzymemreductasesinmethanobacteriumthermoautotrophicumstrainmarburgandδh[j].eurjbiochem,1990,194(3):871-877
[55]  36n?llingj,pihltd,vriesemaa,reevejn.organizationandgrowthphase-dependenttranscriptionofmethanegenesintworegionsofthemethanobacteriumthermoautotrophicumgenome[j].jbacteriol,1995,177(9):2460-2468
[56]  37pihltd,sharmas,reevejn.growthphase-dependenttranscriptionofthegenesthatencodethetwomethylcoenzymemreductaseisoenzymesandn5-methyltetrahydromethanopterin:coenzymemmethyltransferaseinmethanobacteriumthermoautotrophicumdeltah[j].jbacteriol,1994,176(20):6384-6391
[57]  38bobikta,olsonkd,nollkm,wolfers.evidencethattheheterodisulfideofcoenzyme-mand7-mercaptoheptanoylthreoninephosphateisaproductofthemethanylreductasereactioninmethanobacterium[j].biochembiophysrescommun,1987,149(2):455-460
[58]  39heidens,hedderichr,setzkee,thauerrk.purificationofatwo-subunitcytochrome-b-containingheterodisulfidereductasefrommethanol-grownmethanosarcinabarkeri[j].eurjbiochem,1994,221(2):855-861
[59]  40stojanowica,mandergj,duinec,hedderichr.physiologicalroleofthef420-non-reducinghydrogenase(mvh)frommethanothermobactermarburgensis[j].archmicrobiol,2003,180(3):194-203
[60]  41buckelw,thauerrk.energyconservationviaelectronbifurcatingferredoxinreductionandproton/na+translocatingferredoxinoxidation[j].biochimbiophysacta-bioenerg,2013,1827(2):94-113
[61]  42buannr,metcalfww.methanogenesisbymethanosarcinaacetivoransinvolvestwostructurallyandfunctionallydistinctclassesofheterodisulfidereductase[j].molmicrobiol,2010,75(4):843-853
[62]  43woodge,haydockak,leighja.functionandregulationoftheformatedehydrogenasegenesofthemethanogenicarchaeonmethanococcusmaripaludis[j].jbacteriol,2003,185(8):2548-2554
[63]  47bultcj,whiteo,olsengj,zhoul,fleischmannrd,suttongg,blakeja,fitzgeraldlm,claytonra,gocaynejd,kerlavagear,doughertyba,tombjf,adamsmd,reichci,overbeekr,kirknessef,weinstockkg,merrickjm,glodeka,scottjl,geoghagenns,venterjc.completegenomesequenceofthemethanogenicarchaeon,methanococcusjannaschii[j].science,1996,273(5278):1058-1073
[64]  52gottschalkg,thauerrk.thena+translocatingmethyltransferasecomplexfrommethanogenicarchaea[j].biochimbiophysacta-bioenerg,2001,1505(1):28-36
[65]  53gartnerp,eckera,fischerr,linderd,fuchsg,thauerrk.purificationandpropertiesofn5-methyltetrahydromethanopterin:coenzymemmethyltransferasefrommethanobacteriumthermoautotrophicum[j].eurjbiochem,1993,213(1):537-545
[66]  54hipplerb,thauerrk.theenergyconservingmethyltetrahydrome-thanopterin:coenzymemmethyltransferasecomplexfrommethano-genicarchaea:functionofthesubunitmtrh[j].febslett,1999,449(2):165-168
[67]  55gottschalkg,thauerrk.thena+-translocatingmethyltransferasecomplexfrommethanogenicarchaea[j].biochimbiophysacta-bioenerg,2001,1505(1):28-36
[68]  56jettenms,stamsaj,zehnderaj.methanogenesisfromacetate:acomparisonoftheacetatemetabolisminmethanothrixsoehngeniiandmethanosarcinaspp.[j].femsmicrobiollett,1992,88(3):181-197
[69]  57abbanatdr,ferryjg.resolutionofcomponentproteinsinanenzymecomplexfrommethanosarcinathermophilacatalyzingthesynthesisorcleavageofacetyl-coa[j].procnatlacadsciusa,1991,88(8):3272-3276
[70]  59grahameda,demolle.substrateandaccessoryproteinrequirementsandthermodynamicsofacetyl-coasynthesisandcleavageinmethanosarcinabarkeri[j].biochemistry,1995,34(14):4617-4624
[71]  60ferryjg.methanefromacetate[j].jbacteriol,1992,174(17):5489-5495
[72]  61jettenmsm,hagenwr,pierikaj,stamsajm,zehnderajb.paramagneticcentersandacetyl-coenzymea/coexchangeactivityofcarbonmonoxidedehydrogenasefrommethanothrixsoehngenii[j].eurjbiochem,1991,195(2):385-391
[73]  62biavatib,vastam,ferryjg.isolationandcharacterizationof”methanosphaeracuniculi”sp.nov.[j].applenvironmicrob,1988,54(3):768-771
[74]  63frickewf,seedorfh,hennea,kruerm,liesegangh,hedderichr,gottschalkg,thauerrk.thegenomesequenceofmethanosphaerastadtmanaerevealswhythishumanintestinalarchaeonisrestrictedtomethanolandh2formethaneformationandatpsynthesis[j].jbacteriol,2006,188(2):642-658
[75]  64sauerk,harmsu,thauerrk.methanol:coenzymemmethyltransferasefrommethanosarcinabarkeripurification,propertiesandencodinggenesofthecorrinoidproteinmt1[j].eurjbiochem,1997,243(3):670-677
[76]  65burkesa,krzyckija.reconstitutionofmonomethylamine:coenzymemmethyltransferwithacorrinoidproteinandtwomethyltransferasespurifiedfrommethanosarcinabarkeri[j].jbiolchem,1997,272(26):16570-16577
[77]  66fergusondj,krzyckija,grahameda.specificrolesofmethylcobamide:coenzymemmethyltransferaseisozymesinmetabolismofmethanolandmethylaminesinmethanosarcinabarkeri[j].jbiolchem,1996,271(9):5189-5194
[78]  67fergusond,krzyckija.reconstitutionoftrimethylamine-dependentcoenzymemmethylationwiththetrimethylaminecorrinoidproteinandtheisozymesofmethyltransferaseiifrommethanosarcinabarkeri[j].jbacteriol,1997,179(3):846-852
[79]  68rosenblattds,fentonwa.chemistryandbiologyofb12[m].newyork:wiley-intersciences,1999:666
[80]  69tallanttc,paull,krzyckija.themtsasubunitofthemethylthiol:coenzymemmethyltransferaseofmethanosarcinabarkericatalysesbothhalf-reactionsofcorrinoid-dependentdimethylsulfide:coenzymemmethyltransfer[j].jbiolchem,2001,276(6):4485-4493
[81]  70hedderichr,whitmanwb.physiologyandbiochemistryofthemethane-producingarchaea[m].springer,2013.
[82]  74metcalfww,zhangjk,apolinarioe,sowerskr,wolfers.ageneticsystemforarchaeaofthegenusmethanosarcina:liposome-mediatedtransformationandconstructionofshuttlevectors[j].procnatlacadsciusa,1997,94(6):2626-2631
[83]  75moorebc,leighja.markerlessmutagenesisinmethanococcusmaripaludisdemonstratesrolesforalaninedehydrogenase,alanineracemase,andalaninepermease[j].jbacteriol,2005,187(3):972-979
[84]  76pritchettma,zhangjk,metcalfww.developmentofamarkerlessgeneticexchangemethodformethanosarcinaacetivoransc2aanditsuseinconstructionofnewgenetictoolsformethanogenicarchaea[j].applenvironmicrob,2004,70(3):1425-1433
[85]  82rotarua-e,shresthapm,liuf,shrestham,shresthad,embreem,zenglerk,wardmanc,nevinkp,lovleydr.anewmodelforelectronflowduringanaerobicdigestion:directinterspecieselectrontransfertomethanosaetaforthereductionofcarbondioxidetomethane[j].energyenvironsci,2014
[86]  83feistam,scholtenjc,palssonbo,brockmanfj,idekert.modelingmethanogenesiswithagenome-scalemetabolicreconstructionofmethanosarcinabarkeri[j].molsystbiol,2006,2:1-14

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133