OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
产甲烷生化代谢途径研究进展
DOI: 10.3724/SP.J.1145.2014.08019, PP. 1-9
Keywords: 产甲烷菌,生化代谢,还原co2途径,乙酸途径,甲基营养途径
Abstract:
微生物产甲烷过程产生的甲烷约占全球甲烷产量的74%.产甲烷过程对生物燃气生产和全球气候变暖等都有着重要的意义.本文综述了产甲烷菌的具体生化代谢途径,其本质是产甲烷菌利用细胞内一系列特殊的酶和辅酶将co2或甲基化合物中的甲基通过一系列的生物化学反应还原成甲烷.在这一过程中,产甲烷菌细胞能够形成钠离子或质子跨膜梯度,驱动细胞膜上的atp合成酶将adp转化成atp以获得能量.根据底物类型的不同,可以将该过程分为3类:还原co2途径、乙酸途径和甲基营养途径.还原co2途径是以h2或甲酸作为主要的电子供体还原co2产生甲烷,其中涉及到一个最新的发现――电子歧化途径;乙酸途径是乙酸被裂解产生甲基基团和羧基基团,随后,羧基基团被氧化产生电子供体h2用于还原甲基基团;甲基营养途径是以简单甲基化合物作为底物,以外界提供的h2或氧化甲基化合物自身产生的还原当量作为电子供体还原甲基化合物中的甲基基团.通过这3种途径产甲烷的过程中,每消耗1mol底物所产生atp的顺序为还原co2途径>甲基营养途径>乙酸途径.由于产甲烷菌自身难以分离培养,未来将主要通过现代的生物技术和计算机技术,包括基因工程和代谢模型构建等最新技术来研究产甲烷菌的生化代谢过程以及其与其它菌群之间的相互作用机制,以便将其应用于生产实践.
References
[1] | 1ferryjg,housech.thestepwiseevolutionofearlylifedrivenbyenergyconservation[j].molbiolevol,2006,23(6):1286-1292
|
[2] | 2battistuzzifu,feijaoa,hedgessb.agenomictimescaleofprokaryoteevolution:insightsintotheoriginofmethanogenesis,phototrophy,andthecolonizationofland[j].bmcevolbiol,2004,4(44):1-14
|
[3] | 3ferryjg.fundamentalsofmethanogenicpathwaysthatarekeytothebiomethanationofcomplexbiomass[j].curropinmicrobiol,2011,22(3):351-357
|
[4] | 4lelieveldj,crutzenp,brühlc.climateeffectsofatmosphericmethane[j].chemosphere,1993,26(1):739-768
|
[5] | 5陈槐,周舜,吴宁,王艳芬,罗鹏,石福孙.湿地甲烷的产生、氧化及排放通量研究进展[j].应用与环境生物学报,2006,12(5):726-733[chenh,zhous,wun,wangyf,luop,shifs.advanceinstudiesonproduction,oxidationandemissionfluxofmethanefromwetlands[j].chinjapplenvironbiol,2006,12(5):726-
|
[6] | 19thauerrk,kasterak,seedorfh,buckelw,hedderichr.methanogenicarchaea:ecologicallyrelevantdifferencesinenergyconservation[j].natrevmicrobiol,2008,6(8):579-591
|
[7] | 30springere,sachsms,woesecr,boonedr.partialgenesequencesfortheasubunitofmethyl-coenzymemreductase(mcri)asaphylogenetictoolforthefamilymethanosarcinaceae[j].intjsystbacteriol,1995,45(3):554-559
|
[8] | 44rotherm,oelgeschl?gere,metcalfww.geneticandproteomicanalysesofcoutilizationbymethanosarcinaacetivorans[j].archmicrobiol,2007,188(5):463-472
|
[9] | 45ferryjg.coinmethanogenesis[j].annmicrobiol,2010,60(1):1-12
|
[10] | 46deppenmeieru,müllerv,gottschalkg.pathwaysofenergyconservationinmethanogenicarchaea[j].archmicrobiol,1996,165(3):149-163
|
[11] | 48ensslem,zirngiblc,linderd,thauerr.coenzymef420dependentn5,n10-methylenetetrahydromethanopterindehydrogenaseinmethanolgrownmethanosarcinabarkeri[j].archmicrobiol,1991,155(5):483-490
|
[12] | 49mak,linderd,stetterk,thauerr.purificationandpropertiesofn5,n10-methylenetetrahydromethanopterinreductase(coenzymef420-dependent)fromtheextremethermophilemethanopyruskandleri[j].archmicrobiol,1991,155(6):593-600
|
[13] | 50mak,thauerrk.purificationandpropertiesofn5,n10-methylenetetrahydromethanopterinreductasefrommethanobacteriumthermoautotrophicum(strainmarburg)[j].eurjbiochem,1990,191(1):187-193
|
[14] | 51weissds,g?rtnerp,thauerrk.theenergeticsandsodium-iondependenceofn5-methyltetrahydromethanopterin:coenzymemmethyltransferasestudiedwithcob(i)alaminasmethylacceptorandmethylcob(iii)alaminasmethyldonor[j].eurjbiochem,1994,226(3):799-809
|
[15] | 58grahameda,demolle.partialreactionscatalyzedbyproteincomponentsoftheacetyl-coadecarbonylasesynthaseenzymecomplexfrommethanosarcinabarkeri[j].jbiolchem,1996,271(14):8352-8358
|
[16] | 71leighja,alberssv,atomih,allerst.modelorganismsforgeneticsinthedomainarchaea:methanogens,halophiles,thermococcalesandsulfolobales[j].femsmicrobiolrev,2011,35(4):577-608
|
[17] | 72watkinsaj,rousseleg,parkesrj,sassh.glycinebetaineasadirectsubstrateformethanogens(methanococcoidesspp.)[j].applenvironmicrob,2014,80(1):289-293
|
[18] | 73gardnerwl,whitmanwb.expressionvectorsformethanococcusmaripaludis:overexpressionofacetohydroxyacidsynthaseandbeta-galactosidase[j].genetics,1999,152(4):1439-1447
|
[19] | 77gussam,rotherm,zhangjk,kulkkarnig,metcalfww.newmethodsfortightlyregulatedgeneexpressionandhighlyefficientchromosomalintegrationofclonedgenesformethanosarcinaspecies[j].archaea,2008,2(3):193-203
|
[20] | 78farkasja,pickingjw,santangelotj.genetictechniquesforthearchaea[j].annurevgenet,2013,47:539-561
|
[21] | 79costakc,leighja.metabolicversatilityinmethanogens[j].curropinmicrobiol,2014,29:70-75
|
[22] | 80welanderpv,metcalfww.mutagenesisofthec1oxidationpathwayinmethanosarcinabarkeri:newinsightsintothemtr/merbypasspathway[j].jbacteriol,2008,190(6):1928-1936.
|
[23] | 81lessnerdj,lhul,wahalcs,ferryjg.anengineeredmethanogenicpathwayderivedfromthedomainsbacteriaandarchaea[j].mbio,2010,1(5):1-4
|
[24] | 84gonnermanmc,benedictmn,feistam,metcalfww,pricend.genomicallyandbiochemicallyaccuratemetabolicreconstructionofmethanosarcinabarkerifusaro,img746[j].biotechnolj,2013,8(9):1070-1079
|
[25] | 85kumarvs,ferryjg,maranascd.metabolicreconstructionofthearchaeonmethanogenmethanosarcinaacetivorans[j].bmcsystbiol,2011,5(28):1-10
|
[26] | 86oberhardtma,palssonb?,papinja.applicationsofgenome-scalemetabolicreconstructions[j].molsystbiol,2009,5(1):1-15
|
[27] | 6lowedc.globalchange:agreensourceofsurprise[j].nature,2006,439(7073):148-149
|
[28] | 7whitmanwb,bowentl,boonedr.themethanogenicbacteria[m].springer,2006
|
[29] | 8garciajl,patelbkc,ollivierb.taxonomic,phylogenetic,andecologicaldiversityofmethanogenicarchaea[j].anaerobe,2000,6(4):205-226
|
[30] | 9woesecr,kandlero,wheelisml.towardsanaturalsystemoforganisms-proposalforthedomainarchaea,bacteria,andeucarya[j].procnatlacadsciusa,1990,87(12):4576-4579
|
[31] | 10sakais,imachih,hanadas,ohashia,haradah,kamagatay.methanocellapaludicolagen.nov.,spnov.,amethane-producingarchaeon,thefirstisolateofthelineage‘riceclusteri’,andproposalofthenewarchaealordermethanocellalesord.nov[j].intjsystevolmicr,2008,58:929-936
|
[32] | 11paulk,nonohjo,mikulskil,brunea.“methanoplasmatales,”thermoplasmatales-relatedarchaeaintermitegutsandotherenvironments,aretheseventhorderofmethanogens[j].applenvironmicrob,2012,78(23):8245-8253
|
[33] | 12quastc,pruessee,yilmazp,gerkenj,schweert,yarzap,pepliesj,glocknerfo.thesilvaribosomalrnagenedatabaseproject:improveddataprocessingandweb-basedtools[j].nucleicacidsres,2013,41:590-596
|
[34] | 13conradr.controlofmicrobialmethaneproductioninwetlandricefields[j].nutrcyclagroecosys,2002,64(1-2):59-69
|
[35] | 14傅霖,辛明秀.产甲烷菌的生态多样性及工业应用[j].应用与环境生物学报,2009,15(2):574-578[ful,xinmx.ecologicaldiversityandindustrialapplicationofmethanogens.chinjapplenvironbiol,2009,15(2):574-
|
[36] | 15leadbetterjr,breznakja.physiologicalecologyofmethano-brevibactercuticularissp.novandmethanobrevibactercurvatussp.nov.,isolatedfromthehindgutofthetermitereticulitermesflavipes[j].applenvironmicrob,1996,62(10):3620-3631
|
[37] | 16whitmanwb,ankwandae,wolfers.nutritionandcarbonmetabolismofmethanococcusvoltae[j].jbacteriol,1982,149(3):852-863
|
[38] | 17garciajl.taxonomyandecologyofmethanogens[j].femsmicrobiollett,1990,87(3-4):297-308
|
[39] | 18ferryjg.enzymologyofone-carbonmetabolisminmethanogenicpathways[j].femsmicrobiolrev,1999,23(1):13-38
|
[40] | 20abkenh-j,tietzem,brodersenj,b?umers,beifussu,deppenmeieru.isolationandcharacterizationofmethanophenazineandfunctionofphenazinesinmembrane-boundelectrontransportofmethanosarcinamazeig?1[j].jbacteriol,1998,180(8):2027-2032
|
[41] | 21thauerrk.biochemistryofmethanogenesis:atributetomarjorystephenson[j].microbiol-sgm,1998,144:2377-2406
|
[42] | 22taylorcd,wolfers.structureandmethylationofcoenzymem(hsch2ch2so3)[j].jbiolchem,1974,249(15):4879-4885
|
[43] | 23hedderichr,whitmanwb.physiologyandbiochemistryofthemethane-producingarchaea[m].springer,2006
|
[44] | 24cheesemanp,toms-wooda,wolfer.isolationandpropertiesofafluorescentcompound,factor420,frommethanobacteriumstrainmoh[j].jbacteriol,1972,112(1):527-531
|
[45] | 25edwardst,mcbrideb.newmethodfortheisolationandidentificationofmethanogenicbacteria[j].applmicrobiol,1975,29(4):540-545
|
[46] | 26largepj.methylotrophyandmethanogenesis[m].washington:americansocietyformicrobiology,1983
|
[47] | 27liuy,whitmanwb.metabolic,phylogenetic,andecologicaldiversityofthemethanogenicarchaea[j].annnyacadsci,2008,1125(1):171-189
|
[48] | 28shimas,thauerrk.methyl-coenzymemreductaseandtheanaerobicoxidationofmethaneinmethanotrophicarchaea[j].curropinmicrobiol,2005,8(6):643-648
|
[49] | 29morrisr,schauer-gimeneza,bhattadu,kearneyc,strubleca,zitomerd,makijs.methylcoenzymemreductase(mcra)geneabundancecorrelateswithactivitymeasurementsofmethanogenich2/co2-enrichedanaerobicbiomass[j].microbbiotechnol,2014,7(1):77-84
|
[50] | 31lutonpe,waynejm,sharprj,rileypw.themcrageneasanalternativeto16srrnainthephylogeneticanalysisofmethanogenpopulationsinlandfill[j].microbiology,2002,148(11):3521-3530
|
[51] | 32friedmannhc,kleina,thauerrk.structureandfunctionofthenickelporphinoid,coenzymef430,andofitsenzyme,methylcoenzymemreductase[j].femsmicrobiollett,1990,87(3):339-348
|
[52] | 33prakashd,wuy,suhs-j,duinec.elucidatingtheprocessofactivationofmethyl-coenzymemreductase[j].jbacteriol,2014,196:2491-2498
|
[53] | 34ermleru,grabarsew,shimas,goubeaudm,thauerrk.crystalstructureofmethyl-coenzymemreductase:thekeyenzymeofbiologicalmethaneformation[j].science,1997,278(5342):1457-1462
|
[54] | 35rosperts,linderd,ellermannj,thauerrk.twogeneticallydistinctmethyl-coenzymemreductasesinmethanobacteriumthermoautotrophicumstrainmarburgandδh[j].eurjbiochem,1990,194(3):871-877
|
[55] | 36n?llingj,pihltd,vriesemaa,reevejn.organizationandgrowthphase-dependenttranscriptionofmethanegenesintworegionsofthemethanobacteriumthermoautotrophicumgenome[j].jbacteriol,1995,177(9):2460-2468
|
[56] | 37pihltd,sharmas,reevejn.growthphase-dependenttranscriptionofthegenesthatencodethetwomethylcoenzymemreductaseisoenzymesandn5-methyltetrahydromethanopterin:coenzymemmethyltransferaseinmethanobacteriumthermoautotrophicumdeltah[j].jbacteriol,1994,176(20):6384-6391
|
[57] | 38bobikta,olsonkd,nollkm,wolfers.evidencethattheheterodisulfideofcoenzyme-mand7-mercaptoheptanoylthreoninephosphateisaproductofthemethanylreductasereactioninmethanobacterium[j].biochembiophysrescommun,1987,149(2):455-460
|
[58] | 39heidens,hedderichr,setzkee,thauerrk.purificationofatwo-subunitcytochrome-b-containingheterodisulfidereductasefrommethanol-grownmethanosarcinabarkeri[j].eurjbiochem,1994,221(2):855-861
|
[59] | 40stojanowica,mandergj,duinec,hedderichr.physiologicalroleofthef420-non-reducinghydrogenase(mvh)frommethanothermobactermarburgensis[j].archmicrobiol,2003,180(3):194-203
|
[60] | 41buckelw,thauerrk.energyconservationviaelectronbifurcatingferredoxinreductionandproton/na+translocatingferredoxinoxidation[j].biochimbiophysacta-bioenerg,2013,1827(2):94-113
|
[61] | 42buannr,metcalfww.methanogenesisbymethanosarcinaacetivoransinvolvestwostructurallyandfunctionallydistinctclassesofheterodisulfidereductase[j].molmicrobiol,2010,75(4):843-853
|
[62] | 43woodge,haydockak,leighja.functionandregulationoftheformatedehydrogenasegenesofthemethanogenicarchaeonmethanococcusmaripaludis[j].jbacteriol,2003,185(8):2548-2554
|
[63] | 47bultcj,whiteo,olsengj,zhoul,fleischmannrd,suttongg,blakeja,fitzgeraldlm,claytonra,gocaynejd,kerlavagear,doughertyba,tombjf,adamsmd,reichci,overbeekr,kirknessef,weinstockkg,merrickjm,glodeka,scottjl,geoghagenns,venterjc.completegenomesequenceofthemethanogenicarchaeon,methanococcusjannaschii[j].science,1996,273(5278):1058-1073
|
[64] | 52gottschalkg,thauerrk.thena+translocatingmethyltransferasecomplexfrommethanogenicarchaea[j].biochimbiophysacta-bioenerg,2001,1505(1):28-36
|
[65] | 53gartnerp,eckera,fischerr,linderd,fuchsg,thauerrk.purificationandpropertiesofn5-methyltetrahydromethanopterin:coenzymemmethyltransferasefrommethanobacteriumthermoautotrophicum[j].eurjbiochem,1993,213(1):537-545
|
[66] | 54hipplerb,thauerrk.theenergyconservingmethyltetrahydrome-thanopterin:coenzymemmethyltransferasecomplexfrommethano-genicarchaea:functionofthesubunitmtrh[j].febslett,1999,449(2):165-168
|
[67] | 55gottschalkg,thauerrk.thena+-translocatingmethyltransferasecomplexfrommethanogenicarchaea[j].biochimbiophysacta-bioenerg,2001,1505(1):28-36
|
[68] | 56jettenms,stamsaj,zehnderaj.methanogenesisfromacetate:acomparisonoftheacetatemetabolisminmethanothrixsoehngeniiandmethanosarcinaspp.[j].femsmicrobiollett,1992,88(3):181-197
|
[69] | 57abbanatdr,ferryjg.resolutionofcomponentproteinsinanenzymecomplexfrommethanosarcinathermophilacatalyzingthesynthesisorcleavageofacetyl-coa[j].procnatlacadsciusa,1991,88(8):3272-3276
|
[70] | 59grahameda,demolle.substrateandaccessoryproteinrequirementsandthermodynamicsofacetyl-coasynthesisandcleavageinmethanosarcinabarkeri[j].biochemistry,1995,34(14):4617-4624
|
[71] | 60ferryjg.methanefromacetate[j].jbacteriol,1992,174(17):5489-5495
|
[72] | 61jettenmsm,hagenwr,pierikaj,stamsajm,zehnderajb.paramagneticcentersandacetyl-coenzymea/coexchangeactivityofcarbonmonoxidedehydrogenasefrommethanothrixsoehngenii[j].eurjbiochem,1991,195(2):385-391
|
[73] | 62biavatib,vastam,ferryjg.isolationandcharacterizationof”methanosphaeracuniculi”sp.nov.[j].applenvironmicrob,1988,54(3):768-771
|
[74] | 63frickewf,seedorfh,hennea,kruerm,liesegangh,hedderichr,gottschalkg,thauerrk.thegenomesequenceofmethanosphaerastadtmanaerevealswhythishumanintestinalarchaeonisrestrictedtomethanolandh2formethaneformationandatpsynthesis[j].jbacteriol,2006,188(2):642-658
|
[75] | 64sauerk,harmsu,thauerrk.methanol:coenzymemmethyltransferasefrommethanosarcinabarkeripurification,propertiesandencodinggenesofthecorrinoidproteinmt1[j].eurjbiochem,1997,243(3):670-677
|
[76] | 65burkesa,krzyckija.reconstitutionofmonomethylamine:coenzymemmethyltransferwithacorrinoidproteinandtwomethyltransferasespurifiedfrommethanosarcinabarkeri[j].jbiolchem,1997,272(26):16570-16577
|
[77] | 66fergusondj,krzyckija,grahameda.specificrolesofmethylcobamide:coenzymemmethyltransferaseisozymesinmetabolismofmethanolandmethylaminesinmethanosarcinabarkeri[j].jbiolchem,1996,271(9):5189-5194
|
[78] | 67fergusond,krzyckija.reconstitutionoftrimethylamine-dependentcoenzymemmethylationwiththetrimethylaminecorrinoidproteinandtheisozymesofmethyltransferaseiifrommethanosarcinabarkeri[j].jbacteriol,1997,179(3):846-852
|
[79] | 68rosenblattds,fentonwa.chemistryandbiologyofb12[m].newyork:wiley-intersciences,1999:666
|
[80] | 69tallanttc,paull,krzyckija.themtsasubunitofthemethylthiol:coenzymemmethyltransferaseofmethanosarcinabarkericatalysesbothhalf-reactionsofcorrinoid-dependentdimethylsulfide:coenzymemmethyltransfer[j].jbiolchem,2001,276(6):4485-4493
|
[81] | 70hedderichr,whitmanwb.physiologyandbiochemistryofthemethane-producingarchaea[m].springer,2013.
|
[82] | 74metcalfww,zhangjk,apolinarioe,sowerskr,wolfers.ageneticsystemforarchaeaofthegenusmethanosarcina:liposome-mediatedtransformationandconstructionofshuttlevectors[j].procnatlacadsciusa,1997,94(6):2626-2631
|
[83] | 75moorebc,leighja.markerlessmutagenesisinmethanococcusmaripaludisdemonstratesrolesforalaninedehydrogenase,alanineracemase,andalaninepermease[j].jbacteriol,2005,187(3):972-979
|
[84] | 76pritchettma,zhangjk,metcalfww.developmentofamarkerlessgeneticexchangemethodformethanosarcinaacetivoransc2aanditsuseinconstructionofnewgenetictoolsformethanogenicarchaea[j].applenvironmicrob,2004,70(3):1425-1433
|
[85] | 82rotarua-e,shresthapm,liuf,shrestham,shresthad,embreem,zenglerk,wardmanc,nevinkp,lovleydr.anewmodelforelectronflowduringanaerobicdigestion:directinterspecieselectrontransfertomethanosaetaforthereductionofcarbondioxidetomethane[j].energyenvironsci,2014
|
[86] | 83feistam,scholtenjc,palssonbo,brockmanfj,idekert.modelingmethanogenesiswithagenome-scalemetabolicreconstructionofmethanosarcinabarkeri[j].molsystbiol,2006,2:1-14
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|