The Nexus between Bovine Tuberculosis and Fasciolosis Infections in Cattle of the Kafue Basin Ecosystem in Zambia: Implications on Abattoir Surveillance
Bovine tuberculosis (bTB) and fasciolosis are important but neglected diseases that result in chronic infections in cattle. However, in Zambia, these diseases are mainly diagnosed at abattoirs during routine meat inspection. Albeit the coinfection status, these diseases have been reported as nothing more than normal separate findings without an explanatory phenomena. Forthwith, we formulated this study to assess the possible association of the two diseases in a known high prevalence area on the Kafue basin ecosystem. Of the 1,680 animals screened, 600 (35.7%; 95% CI 33.4%–38%) and 124 (7.4%; 95% CI 6.1%–8.6%) had fasciolosis and tuberculous lesions; respectively, whilst 72 had both fasciola and tuberculous lesions representing 12% (95% CI 9.4%–14.6%) and 58.1% (95% CI; 49.3%–66.7%) of the total positives for fasciola and tuberculosis, respectively. Jaundice was seen in 304 animals, 18.1% (95% CI; 16.3%–19.9%) and was significantly correlated to fasciolosis ( , ). A significant association ( , , and ) was found between fasciolosis and tuberculous lesions. Simple logistic regression intimated fasciolosis as a strong predictor for tuberculous lesions with animals that had fasciola being five times more likely to have tuberculous lesions (odds ratio = 4.8, 95% CI: 3.3–7.0). This study indicates that transmission and spatial risk factors of communicable and noncommunicable diseases such as bTB and fasciolosis can be correlated in an ecosystem such as the Kafue flats. 1. Introduction In Zambia, bovine tuberculosis (bTB), caused by Mycobacterium bovis, and fasciolosis caused by Fasciola gigantica have been reported to be causing considerable economic losses to the livestock industry annually through abattoir condemnations accompanied with loss of production efficiency [1–9]. The frequency of abattoir condemnations from the two conditions has been well documented in Zambia through various studies that have shown direct losses to the general agribusiness and the livestock industry in particular [2, 5, 7]. Whereas bovine tuberculosis (bTB) is one of the most intractable diseases of cattle in Zambia [3], fasciolosis on the other hand is treatable despite its high prevalence and endemicity, mainly due to neglect [7]. These disease conditions have always been considered separately despite showing a concurrent infection in nature only apparent through abattoir findings. Infection by the parasitic trematode Fasciola gigantica is acquired by cattle through the ingestion of vegetation on which the infective metacercariae have encysted. The metacercariae excyst in the
References
[1]
M. Munyeme, J. B. Muma, E. Skjerve et al., “Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia,” Preventive Veterinary Medicine, vol. 85, no. 3-4, pp. 317–328, 2008.
[2]
M. Munyeme, L. Rigouts, I. C. Shamputa et al., “Isolation and characterization of Mycobacterium bovis strains from indigenous zambian cattle using spacer oligonucleotide typing technique,” BMC Microbiology, vol. 9, article 144, 2009.
[3]
M. Munyeme, J. B. Muma, K. L. Samui et al., “Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/wildlife interface areas of Zambia,” Tropical Animal Health and Production, vol. 41, no. 3, pp. 345–352, 2009.
[4]
M. Munyeme, J. B. Muma, V. M. Siamudaala, E. Skjerve, H. M. Munang'andu, and M. Tryland, “Tuberculosis in Kafue lechwe antelopes (Kobus leche Kafuensis) of the Kafue Basin in Zambia,” Preventive Veterinary Medicine, vol. 95, no. 3-4, pp. 305–308, 2010.
[5]
A. M. Phiri, I. K. Phiri, C. S. Sikasunge, and J. Monrad, “Prevalence of fasciolosis in Zambian cattle observed at selected abattoirs with emphasis on age, sex and origin,” Journal of Veterinary Medicine B, vol. 52, no. 9, pp. 414–416, 2005.
[6]
A. M. Phiri, I. K. Phiri, S. Siziya, C. S. Sikasunge, M. Chembensofu, and J. Monrad, “Seasonal pattern of bovine fasciolosis in the Kafue and Zambezi catchment areas of Zambia,” Veterinary Parasitology, vol. 134, no. 1-2, pp. 87–92, 2005.
[7]
A. M. Phiri, I. K. Phiri, C. S. Sikasunge, M. Chembensofu, and J. Monrad, “Comparative fluke burden and pathology in condemned and non-condemned cattle livers from selected abattoirs in Zambia,” Onderstepoort Journal of Veterinary Research, vol. 73, no. 4, pp. 275–281, 2006.
[8]
A. M. Phiri, A. Chota, J. B. Muma, M. Munyeme, and C. S. Sikasunge, “Helminth parasites of the Kafue lechwe antelope ( Kobus leche Kafuensis): a potential source of infection to domestic animals in the Kafue wetlands of Zambia,” Journal of Helminthology, vol. 85, no. 1, pp. 20–27, 2011.
[9]
J. Yabe, I. K. Phiri, A. M. Phiri, M. Chembensofu, P. Dorny, and J. Vercruysse, “Concurrent infections of Fasciola, Schistosoma and Amphistomum spp. in cattle from Kafue and Zambezi river basins of Zambia,” Journal of Helminthology, vol. 82, no. 4, pp. 373–376, 2008.
[10]
D. Clery, P. Torgerson, and G. Mulcahy, “Immune responses of chronically infected adult cattle to Fasciola hepatica,” Veterinary Parasitology, vol. 62, no. 1-2, pp. 71–82, 1996.
[11]
V. O. Ezenwa, R. S. Etienne, G. Luikart, A. Beja-Pereira, and A. E. Jolles, “Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo,” American Naturalist, vol. 176, no. 5, pp. 613–624, 2010.
[12]
P. Minden, P. J. Kelleher, and J. H. Freed, “Immunological evaluation of a component isolated from Mycobacterium bovis BCG with a monoclonal antibody to M. bovis BCG,” Infection and Immunity, vol. 46, no. 2, pp. 519–525, 1984.
[13]
J. S. Dillman, Final Report, Veterinary Wildlife Research Section, Department of Veterinary Services, Ministry of Africulture, Lusaka, Zambia, 1976.
[14]
J. A. Drewe, A. K. Foote, R. L. Sutcliffe, and G. P. Pearce, “Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta),” Journal of Comparative Pathology, vol. 140, no. 1, pp. 12–24, 2009.
[15]
Anonymous, Annual Report of the Department of Veterinary and Livestock Development, Government of the Republic of Zambia, 2004.
[16]
C. H. Collins and J. M. Grange, “The bovine tubercle bacillus,” Journal of Applied Bacteriology, vol. 55, no. 1, pp. 13–29, 1983.
[17]
J. B. Muma, K. L. Samui, V. M. Siamudaala et al., “Prevalence of antibodies to Brucella spp. and individual risk factors of infection in traditional cattle, goats and sheep reared in livestock-wildlife interface areas of Zambia,” Tropical Animal Health and Production, vol. 38, no. 3, pp. 195–206, 2006.
[18]
J. B. Muma, K. L. Samui, J. Oloya, M. Munyeme, and E. Skjerve, “Risk factors for brucellosis in indigenous cattle reared in livestock-wildlife interface areas of Zambia,” Preventive Veterinary Medicine, vol. 80, no. 4, pp. 306–317, 2007.
[19]
M. Munyeme, J. B. Muma, H. M. Munang'andu, C. Kankya, E. Skjerve, and M. Tryland, “Cattle owners' awareness of bovine tuberculosis in high and low prevalence settings of the wildlife-livestock interface areas in Zambia,” BMC Veterinary Research, vol. 6, article 21, 2010.
[20]
J. F. Gracey, D. S. Collins, and R. J. Huey, Meat Hygiene, W B Saunders and Company, Toronto, Canada, 10th edition, 1999.
[21]
I. Dohoo, W. Martin, and H. Stryhn, Veterinary Epidemiology Research, Charlotte, NC, USA, 2003.
[22]
C. Rapsch, G. Schweizer, F. Grimm et al., “Estimating the true prevalence of Fasciola hepatica in cattle slaughtered in Switzerland in the absence of an absolute diagnostic test,” International Journal for Parasitology, vol. 36, no. 10-11, pp. 1153–1158, 2006.
[23]
M. T. Brady, S. M. O'Neill, J. P. Dalton, and K. H. G. Mills, “Fasciola hepatica suppresses a protective Th1 response against Bordetella pertussis,” Infection and Immunity, vol. 67, no. 10, pp. 5372–5378, 1999.
[24]
R. J. Flynn, C. Mannion, O. Golden, O. Hacariz, and G. Mulcahy, “Experimental Fasciola hepatica infection alters responses to tests used for diagnosis of bovine tuberculosis,” Infection and Immunity, vol. 75, no. 3, pp. 1373–1381, 2007.
[25]
R. J. Flynn and G. Mulcahy, “Possible role for toll-like receptors in interaction of Fasciola hepatica excretory/secretory products with bovine macrophages,” Infection and Immunity, vol. 76, no. 2, pp. 678–684, 2008.